
ST

(^fn cys.

ESD-TR-72-147, Vol. 1 MTR-2254, Vol. I

HARMONIOUS COOPERATION OF PROCESSES

OPERATING ON A COMMON SET OF DATA, PART 1

by

L. J. LaPadula

DECEMBER 1972

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Maw.sachu.sett.-s

«so

Approved for public release;
distribution unlimited.

Project 671A

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

,AD7^7ctox

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

Invention that may in any way be related thereto.

Do not return this copy Retain or ne,t'uy
J

ESD-TR-72-147, Vol. 1 MTR-2254, Vol. I

HARMONIOUS COOPERATION OF PROCESSES

OPERATING ON A COMMON SET OF DATA, PART 1

by

L. J. LaPadula

DECEMBER 1972

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 671A

Prepared by

THE MITRK CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

FOREWORD

The work described in this report was carried out under the spon-

sorship of the Deputy for Command and Management Systems. Project fi71A

by The MITRE Corporation, Bedford, Massachusetts, under Contract No.

F19(628)-71-C-0002.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command and Management Systems

11

ABSTRACT

A mathematical model of a computer system for multi-user data
base management is presented. Rules of cooperation, a scheduling
strategy, and a safety algorithm are shown to provide harmonious
cooperation among processes while preventing conflict, deadlock, and
permanent blocking. Throughout the development, the discussion is
related to a set of COBOL programs operating on a collection of
COBOL files.

iii

PREFACE

The work reported herein was performed under Project 671A,
Multi-User Data Base Management task, for which the project leaders
were Mrs. Judith A. Clapp (MITRE) and Dr. John B. Goodenough (ESD).

The starting point can most easily be identified by reference
to the works of Habermann^-1' and Silver(2) - that is, I set out to
see what could be done to achieve multi-user data sharing if I
assumed the general approach of the referenced works.

In (1) Dr. Habermann established in 1967 a mathematical model of
a system of cooperating abstract machines; to my knowledge, there has
been no significant refinement of the model nor replacement for the
model since that time. The latter remark should be understood in the
context "given the same general problem, information, and desired
properties." Other deadlock-free resource sharing models have tended
to go in the direction of refinement by requiring more information
about a process (abstract machine)—this leads to the potential for
performance improvement but does not, in my opinion, provide a new
significant model. One problem with the model, as reported by Dr.
Habermann in his popularized version'") of his doctoral thesis, has
been pointed out by Holt in (3), wherein he offers a solution to the
problem of permanent blocking of a process.

A principal part of the model is a multi-dimensional resource
sharing discipline (multi-dimensional loan office model), wherein
resources are partitioned into a finite number of equivalence classes
with a finite number of indistinguishable members in each class. It
is interesting to note that a good deal of the theoretical work appear-
ing in (1) with respect to the abstract machines (such as the notions
of "coupled machines", "system of abstract machines", "task-flow
diagram", "feed-back task", "cooperation in conversational mode",
"hierarchical system", "the difficult case that what is to be considered
as a borrowed coin, may in its turn become a customer of the loan-
office", and others) seems to have been largely ignored in the litera-
ture, although these notions are a significant part of the original
work.t1)

In any case it is quite clear that direct application of Dr.
Habermann's model to the sharing of data leads to an artificial
methodology, for we do not generally have the case that a data base
may be partitioned into equivalence classes of indistinguishable
objects. This is certainly no criticism of Dr. Habermann's work—
clearly, there was not the intention on his part that the data sharing
problem would be solved by his model.

iv

(2)
The influence of Dr. Habermann's work on the work of Mr. Silver

is apparent. The motivation for the choice of binary relation between
elements of the data base may well have derived from the discussion of
hierarchical structure by Dr. Habermann,'-*-' in which he defines a
hierarchical system of abstract machines to be one in which the collec-
tion of classes of equivalent machines does not contain any loops.
The graph-theoretic approach adopted by Mr. Silver has the nice property
that circuits in digraphs correspond nicely to loops in the collection
of classes of equivalent machines in Dr. Habermann's work. It is not
surprising that the loop-free digraph in Mr. Silver's model represents
a safe state of the system.

In the present work, the notion of binary relation among elements
of the data base has been borrowed from Mr. Silver's work (no such
relation among elements of equivalence classes appeared in (1));
however, its use has been generalized by not specifying the properties
of the relation (in particular, the binary relation can be that defined
by Mr. Silver,^ ' can be an equivalence relation such as "identity",
or can be chosen to reflect relative security classification of items).
The notion of the safe permutation of processes has been borrowed from
Dr. Habermann's work.'D It is important to note that all the asser-
tations about the model to be presented in this work which use the
safe permutation can be restated in terms of an acyclic digraph—the
former representation (permutation) is more amenable to symbolic mani-
pulation, while the latter (digraph and its associated adjacency
matrix) may well be more suitable for computer computations.

(2)
In Mr. Silver's work the "safe situation" was equated with

the existence of a loop-free digraph representation of the processes.
In the present work, the definition of safe situation has been care-
fully chosen (as in Dr. Habermann's work) so that it becomes quite
clear that the existence of a safe permutation (acyclic digraph) is
a sufficient but not necessary condition for safety. This makes
clear the possibility that one may discover a weaker necessary con-
dition for safety.

The comments made by Mr. Silver in (2), to wit

1) "The extension of the definitions and theorems to cover
this complication" (each process has associated with it
a set R± (its read set)) "is straightforward, but leads
to tiresome case analysis."

2) "Allowing new processes to enter the scene does introduce
a new and more subtle form of lockout: ..." (permanent
blocking—see Holt^3^),

are reflected in the present work. The case analysis for read-only
use is handled rigorously and the permanent blocking problem is
investigated and solved rigorously. In addition, the present work
goes beyond the work and suggestions of Mr. Silver'^) by introducing
inquiry-use-mode which achieves more significant sharing of the data
base than allowed for in the model of (2).

My appreciation goes to Mrs. Nancy H. Anschuetz, director of
MITRE Department 73 Research Center, for her assistance to me in
obtaining specific materials and for her continual service to me in
bringing potentially relevant material to my attention.

I am indebted to Dr. David E. Bell (MITRE, Project 671A) for
his critical review of the mathematical portions of the paper and
for the several changes he suggested for clarification of the develop-
ment and to Mr. Joseph E. Sullivan (MITRE, D73) and Mrs. Judith A. Clapp
for their several helpful comments with respect to the discussion
of COBOL programs.

vi

TABLE OF CONTENTS

LIST OF ILLUSTRATIONS

Page

ix

SECTION I INTRODUCTION
GENERAL CONSIDERATIONS
SUMMARY OF THE REPORT
AUTHOR'S CONCLUSIONS AND RECOMMENDATIONS

1
1
2
3

SECTION II

SECTION III

SECTION IV

AN ABSTRACT MODEL OF COOPERATING PROCESSES 5
INTRODUCTION 5
STRUCTURE OF THE DATA 5
COOPERATING PROCESSES 5
CONFLICT AND DEADLOCK 8
POTENTIAL BLOCKING 9
THE SAFE SITUATION 10
RULES OF COOPERATION 10
HARMONIOUS COOPERATION IN (P, D) 11

THE MODEL APPLIED TO A SET OF COBOL PROGRAMS 19
INTRODUCTION 19
STRUCTURE OF THE DATA 19
COOPERATING PROGRAMS 19
CONFLICT AND DEADLOCK 20
POTENTIAL BLOCKING 23
THE SAFE SITUATION 24
RULES OF COOPERATION 24
HARMONIOUS COOPERATION IN (C, D) 25
DISCUSSION OF THE SYSTEM (C, D) 26

EXTENSION OF THE MODEL 27
INTRODUCTION 27
EXTENSION TO ALLOW INCREASED SHARING FOR
READ-ONLY USE 27
Conflict and Deadlock 27
Potential Blocking 28
The Safe Situation 28
Rules of Cooperation 28
Harmonious Cooperation in (P, D) 29
Discussion of (P, D) 30

EXTENSION TO ALLOW A DYNAMICALLY CHANGING
SET P 30
Introduction 30
Cooperating Processes 31
Permanent Blocking 31
Suspended Processes and the Scheduler 32
Scheduling by Expediency 33

vii

TABLE OF CONTENTS (Continued)

SECTION IV

SECTION V

EXTENSION TO ALLOW A DYNAMICALLY CHANGING
SET P_ (Continued)
Scheduling by Eventuality
Harmonious Cooperation in (P, D, E^)

A REPRESENTATION OF THE SYSTEM (P, D, Ex)
INTRODUCTION
STATES OF A PROCESS IN (P, D, Ex)

Page

36
39

40
40
40

STATES AND BEHAVIOR OF THE SYSTEM (P, D, Ex) 42

SECTION VI THE EXTENDED MODEL APPLIED TO A SET OF COBOL
PROGRAMS 52
INTRODUCTION 52
GENERAL CONSIDERATIONS 52
DYNAMICALLY CHANGING SET C 54
MULTIPLE READ-ONLY USE OF A FILE 54
COORDINATION OF DATA AND OTHER RESOURCE
SHARING 54

STRATEGIES FOR THE APPLICATION DESIGNER 55
SUMMARY 56

SECTION VII

SECTION VIII

EXTENSION OF THE MODEL TO INCREASE POTENTIAL
FOR CONCURRENT USE OF DATA
INTRODUCTION
INQUIRY-USE-MODE
STRUCTURE OF THE DATA
CONFLICT AND DEADLOCK
POTENTIAL BLOCKING
THE SAFE SITUATION
RULES OF COOPERATION
HARMONIOUS COOPERATION IN (P, D, ll» E2)

THE MODEL (P, D, Ei, E2) APPLIED TO A
SET OF COBOL PROGRAMS
INTRODUCTION
STRUCTURE OF THE DATA
COOPERATING PROGRAMS
USE MODES FOR FILES
CONFLICT, DEADLOCK, AND PERMANENT BLOCKING
THE SAFE SITUATION
RULES OF COOPERATION
ENTERING AND LEAVING PROGRAMS

58
58
58
58
60
62
63
63
64

67
67
67
68
68
70
71
71
72

viii

TABLE OF CONTENTS (Concluded)

Page
SECTION VIII CREATION AND DELETION OF FILES AND RECORDS 72

THE SCHEDULER 73
DISCUSSION OF THE SYSTEM (C, D, E , E_) 75
SUMMARY i 77

APPENDIX LIST OF THEOREMS 79

REFERENCES 80

LIST OF ILLUSTRATIONS

Figure Number Page
1 Scheduler Algorithm: Release of an Element 38
2 Transition Diagram for a Process in (P, p_, E^) 41
3 Transition Diagram for a Process in (P, J), Ej)

Showing Contingencies 43
4 Transition Diagram for States in (P, D, E^) 45
5 Description of the Behavior of the System

(P, D, EX) 49

ix

SECTION I

INTRODUCTION

GENERAL CONSIDERATIONS

Just a passing familiarity with the subject of multi-user data
base management easily convinces one that the attendant problems are
numerous and complex. The reader who is unaware of the problems will
find ample, relevant exposition in (7) by Glore et al.

The problems, fortunately I think, are common to a number of
technical subjects which at first sight may seem only tangentially
related. Resource sharing, mutual exclusion techniques, multipro-
cessor synchronization, and in general, synthesis and analysis of
control mechanisms for parallel systems - these and other subjects
have relevant technical relationships to the subject of multi-user
data base sharing.

I decided at the outset of the work, reported in the following
sections, that the investigation would start at some clearly defined
point and would, hopefully, proceed in one direction at a time. This
decision accounts for two characteristics of this report:

1) the material is presented in the order in which the investi-
gation proceeded - as a result, the reader will have the
advantage of following a coherent, developing thread of
reasoning;

2) the development leads to the gross specification of a single
class of systems.

The result, I think, is satisfactory; for, the systems implied
by the constructed model can perform real jobs in a multi-user envi-
ronment .

I chose to approach the problems and develop solutions using
these guidelines:

•that the work should offer specific solutions,

•that the treatment should be as mathematically rigorous as
required to show that proffered solutions are indeed solutions,

•that the work should be related to an easily realizable imple-
mentation of the mathematical model.

The last guideline accounts for those sections which deal with COBOL
programs processing COBOL files. While the model is more general
than the latter example, I feel that the example has a clear, direct
bearing on the processing needs of the sponsor of the current applied
research effort.

SUMMARY OF THE REPORT

In Section II a formal model of a system is presented. This
model describes a set of abstract machines concurrently operating on
a common data base. Rules are stated which are intended to avoid
conflict and deadlock with respect to the use of a shared data base.
That the rules suffice to provide this protection is shown in the
form of a number of theorems with proofs. In addition, an algorithm
is described which allows a system to uniquely determine whether or
not a safe situation (free of conflict and no possibility of deadlock)
exists. This section represents the major step toward the development
of an adequate model; within the framework established it becomes
easy to attack and solve specific problems.

In Section III the formal model is reconstructed in terms pf
COBOL programs operating on a set of COBOL files. All of the material
of Section II is reviewed, in an intuitive way rather than by theorem
and proof, and the characteristics of the system are discussed. This
exercise also serves to clarify some of the shortcomings of the
initial model and to point to major areas which require further
investigation.

In Section IV two of the shortcomings of the model are removed.
First, the model is extended to allow for read-only use of data. In
this extension, read-only use is a property associated with a process
rather than a set of data - the trivial case wherein a set of data
is identified as read-only is not treated. Second, the model is
extended to allow a dynamically changing set of processes to operate
on the data base; this extension introduces the problem of permanent
blocking, for which a solution is offered.

In Section V a representation of the states and behavior of the
model developed in Section IV is presented. This representation has
some of the characteristics of both Petri nets and graph programs;
its uses are as a compact description and as a specification for a
simulation of the model.

In Section VI the formal model is once again applied to a set of
COBOL programs operating on a set of COBOL files. The discussion
deals with characteristics of the hypothetical system in general,

a dynamically changing set of programs, multiple read-only use of a
file, and coordination of data sharing with the sharing of other
resources of the system. Finally, a gross qualitative analysis of
the system concludes that the potential for concurrent use of files
must be increased in order to increase the usefulness of the hypo-
thetical system.

In Section VII the difficult problem of allowing, in some sense,
that many programs may simultaneously be reading and writing the
same file is taken up in terms of the formal model. A method, called
inquiry-use mode, is developed, and it is shown that the processes
of the system cooperate harmoniously.

In Section VIII, which is an extension of the discussion of
Section VI, the hypothetical system of COBOL programs with the
addition of inquiry-use mode is examined.

AUTHOR'S CONCLUSIONS AND RECOMMENDATIONS

The principal objective of the work - to construct a canonical
specification for a reasonable multi-user, data sharing system - has
been achieved in the sense that the constructed model provides guid-
ance for the design of a multi-user data base management system which
has the properties:

1) allows multiple-user data base sharing, to the extent that
many programs may concurrently be reading and writing the
same file in a restricted-use mode;

2) conflict, deadlock, and permanent blocking do not occur;

3) integrity of the data base is guaranteed without qualification;

4) integrity of information generated from the data base can be
achieved.

The use of a mathematical discipline in the definition and solu-
tion of problems has proved helpful - to this author, the method was
necessary, for at many turns in the development what seemed intui-
tively correct was mathematical nonsense, with the result that many

pitfalls were avoided.

The section of the paper which presents a description of the
states and behavior of the model is both interesting and useful. The
description can be used as a specification for construction of a simu-
lation; the method of description, borrowing as it does from Petri net
and graph program techniques, is interesting as a technique.

The experience of producing this paper leads me to two recommenda-
tions:

1) that the development of a model of a multi-user data sharing
system which does not require foreknowledge of data require-
ments should be attempted; it would be informative to compare
such a model to the one presented herein;

2) that the available mathematical tools for representations,
synthesis, and analysis of systems be brought to bear on any
such undertaking as presented herein—when the tools are not
available, they should be developed.

SECTION II

AN ABSTRACT MODEL OF COOPERATING PROCESSES

INTRODUCTION

In this section we establish a basic model of a system of pro-
grams concurrently operating on a data base. We give precise meanings
to the elements of the model so that they may be dealt with mathemati-
cally. The elements of the system are also abstracted from most of
the considerations pertinent to real programs and data bases - con-
siderations which, initially, are irrelevant to our purpose.

STRUCTURE OF THE DATA

definition

notation

definition

definition

A data base, p_, is a finite, non-empty set, j^, of
elements together with a binary relation, R, defined
over the elements of S. The relation JR has an
unspecified set of properties.

Small letters denote elements of S; e.g., a, b, c,
.... Capital letters denote subsets of S; e.g., T,
U, V If a is related to b by R, we write
aRb. We denote the data base by D = (S, R). We
will also use the ordinary set operators in their
usual way; e.g., T C U means for every t e T, t e U.

a and b are comparable if either aRb or bRa. We
denote this by a +-*• b.

T and U are comparable if 3t e T and u e U such
that t •*-*• u. We denote this by T -*-»- u.

COOPERATING PROCESSES

We consider the cooperation of a finite set of processes
operating concurrently on a data base D = (S, R). Careful attention
must be given to the meanings of the terms "process" and "concurrently.

A process is defined in terms of an abstract machine in the
sense of Habermann.^' In the application of the model to be devel-
oped, the term "process" can be used to describe a broader class of
computer programs, as seems to have been intended by Silver.^ ' For
our purposes here, it will prove convenient to use the following defi-
nitions and notions.

A sequential machine is a quintuple (A, X, Y, f, g) where:

A is a finite set, the elements of which are called states;

X is a finite set, the elements of which are called input signals;

Y is a finite set, the elements of which are called output signals;

f is a mapping of A x X in A;

g is a mapping of A x X in Y;

the sets A, X, and Y are non-empty.

Let (W, •) and (Z, •) be semigroups where:

• is a concatenation operation;

W is generated by elements of X;

Z is generated by elements of Y.

Extend f and g to mappings of A x W in A and A x W in Z, respec-
tively, as follows;

let w = x • x_ • ... • x be an element of W and a, e A;
1 2 n j

the element f(a., w) = a., can be calculated from the recursive
J j+n

relation a... = f(a .,, x.) for each i e {1, 2, ..., n};

the element g(a , w) = z where z = y • y„ • ... • y can be

calculated from the sequence a., a.. n a,,. -, and the
j j+1 j+i-1

relation y. = g(a... ,, x,) for each i e {l, 2, ..., n}.
I j+i-1 i

Consequently, we have the simple calculation rules:

(1) f(a , w± • w2) = f(f(a,, w1), w2)

(2) g(a , wx • w2) = g(a , wx) • g(f(a., v^), w2)

These rules are a formal expression of our ordinary intuitive notion
of the operation of a finite state sequential machine.

Let a special state a in A be defined; call it the initial
state and let it be unique (i.e., for every w e W and a e A,
a ^ ao, g(a0, w) ^ g(a, w)). Next we identify a special subset of
W in order to specialize the sequential machine with an initial
state to our purposes.

Let w e W be such that f(a0, w) = a0; let wj_ • w2 = w; if
f(aQ, w^) ± a0 for every factorization of w then w is called
the contents of a task. We collect such elements w e W in the
special subset I C W. Hence, I is a subset of W such that for
every w e I:

(i) f(a , w) = a ;
o o

(ii) f(a , w.) 4 a for every factorization w, • w„ = w.
o 1 o 12

In other words, I contains all those sequences of input signals
for which it is true that, starting in its initial state, the sequen-
tial machine will again be in its initial state at the end of the
sequence of input signals but will not return to its initial state
before the end of the sequence of input signals. We may similarly
define a subset 0 C Z, where elements of 0 are called the
output of a task.

We can now precisely define the terms "abstract machine" and
"sequential process."

An abstract machine is a sequential machine with an initial
state for which the subset I is non-empty.

A sequential process is the series of states generated by cal-
culation of f(a , w).

o

Henceforth, we will be concerned only with the special case that the
abstract machine processes a task - that is, w e I defines the
input signals for the machine, which starts at its initial state.
A run of the abstract machine is a sequential process defined for
some w e I. When the abstract machine is out of its initial state
and in some other of its states or is in its initial state and has
been given a w e I to "process," we say that the abstract machine
is engaged.

Having defined precisely what we are dealing with, we will hence-
forth simply refer to a process; a process is to be understood to be
an abstract machine which processes tasks. The existence of a process
is continuous in the sense that it exists both when engaged and when
not engaged. The term "process" is employed (instead of abstract

machine) because of its intuitive appeal - that is, the author wishe6
to encourage the reader to use his own notion of "process," relying
on the preceding definitions only when they are crucial to the develop-
ment. So, for example, most often it will suffice to think of a
process as a procedure in execution; or, one might think of a process
as an abstract entity whose states are defined by execution of the
instructions of a procedure by a processor.

In the operation of a set of processes, time is considered to
be a counter, the value of which equals the number of actions per-
formed since the start. An action itself is considered timeless.

In the proceedings of a set of processes, two actions never
coincide in time, so that a given increase of time is caused by only
one process. Thus, we suppose that time progresses in a discrete
series of steps, at each of which just one process takes an action;
the discrete progress of time is independent of the success or failure
of the action.

Each process takes a finite number of actions; thus, it is
guaranteed that a process, once engaged (begun), will terminate its
processing.

In this section of the paper we will deal with a finite, fixed
set of processes P_ = {P;L> P2» •••» Pn^» where Pi denotes a pro-
cess. We will be concerned with one run of the system (P, D): that
is,

1) the system (P, D) starts out with all P e P_ in initial
states;

2) a run of the system extends from the time of first engagement
of a P e P_ to the time of finishing of every P e P_ which
has been engaged; during a run of the system, if P^
finishes, P-^ may not be engaged again until the run of the
system is terminated (every P e P_ is again in initial
state).

CONFLICT AND DEADLOCK

Let P_ = {P-p P2» •••» Pri^ be a set of processes operating on
p_. Let each P^ have associated with it some subset W^ of S at
each moment of its engagement. The subset W^ is to be understood
to contain all elements of S which P^ is currently processing in
any way.

definition ?± conflicts with Pj if Wi «->- Wj. That is to
say that both P^ and Pj are concurrently pro-
cessing elements of S, say a^ and aA , such
that a-jjtej or ajRa^.

Suppose we make a rule which says "Pi may not change its asso-
ciated W^ if the change would cause it to conflict with some other
process." The rule provides protection from conflict but allows P_
to become deadlocked on D, as shown in the following example:

Suppose that, at moment t = t0 in the proceedings of P_, P-^
and P* are not in conflict (i.e., Wi •*-*• Wj does not hold).
Suppose further that the next action for Pj is to increase Wi to
Wi (Wi 9 WP such that Wl *"*" Wj • and that the next action for pj
is to increase Wj to Wj such that Wi •*-*• W^. Neither P^ nor
Pj is allowed to proceed under the proposed rule. Generalization
to the n processes of P_ shows that P_ can become deadlocked on
D.

Clearly, we must do something to avoid deadlock; at the same
time, we wish to allow P_ to operate on D in a sharing way: that
is, we wish to avoid partitioning of S into disjoint subsets asso-
ciated with the processes of P_.

To this end, with each P^ we associate V-f C S such that, at
any moment t = t^ during a run of Pi, Wi C Vi for all t > t^. Vi
is a subset of S which establishes a bound on the area of the data
base in which Pi will operate; it is a prediction of possible data
requirements of P^ At any moment, Vi is the subset of S on
which P^ has a claim while W^ is the subset of S which Pi is
using. Both W^ and Vi may change during the life (a run) of Pi
subject to the restrictions:

(i) W± C V±

(ii) if V., is changed to V! , then V! C V..
i 6 1 1-1

POTENTIAL BLOCKING

We may now define a concept of potential blocking (a prediction
of possible conflict) among processes in terms of their associated
subsets V.

definition P^ potentially blocks Pj (notation: P^ •*• Pj)
if i 4 j and W± *•*• V.. P± •* Pj means that ?±

has wandered in ID into an area on which PJ has
established a claim, although at the moment, it
may be that W^ •*•+ Wj does not hold.

We will normally say simply that P^ blocks Pj when P± "•* Pj;
we will mean P^ is potentially blocking Pj.

THE SAFE SITUATION

We may now also formalize our intuitive notion of harmonious
cooperation among the processes of P_.

definition The processes of P_ are in a safe situation at
moment t if for every process Pfc the moment
tjf > t can be reached at which the relation:

P -/-> P. for every j e N - { 1, 2 n} holds. (i)

NOTE: P. -h> P. means P. is not potentially blocked by P.,. J k k v ' j

RULES OF COOPERATION

We now state a set of rules which, we will show, guarantee
that the processes of P_ may harmoniously operate on D; that is,
the data base may be shared while it is guaranteed that deadlock will
not occur.

Rule 1: Each process P^ begins operation with a bound, V^, on
its Wi. (Initially, W^ = <£; i.e., the empty set.)

Rule 2: A process PJL may not change its associated W^ if the
change would cause it to conflict with some other process.

Rule 3: At each moment of time, one of the processes, say P, takes
an action, changing its state in one of four ways:

(1) P finishes, reducing W and V to the empty set,

(2) P changes W, subject to W C V,

(3) P changes V to V', subject to V* C V, or

(4) V and W remain unchanged.

10

HARMONIOUS COOPERATION IN (P, D)

Theorem 1 Let P change its state according to R3. If in
the new state ?^ •*• P, then this was true in the
old state as well.

Proof: Pi •+ P means W-^ «->- V' (where V' denotes the
bound for P after its state change). W\»
implies
But -'
Pi +

3w e Wj_ and v' e V such that
V e V since V' c V so that
P in the old state as well.

Wi

w
V

V
-> v'
and

Theorem 2 Assume that the next action of each P^ is to
increase W^ to V^ (i.e., make W^ = V^). If
the set of processes is in a safe situation at
this moment, then there exists some P^ which is
not potentially blocked by any other process.

Proof: Assume the theorem is false,
j 3i(j) such that P

Kj)

Then for every
P. at this moment.

Kj)

so that if P^

implies W.
Kj)

makes V.j we have W^Q) ^->- wj ,
but this is not allowed by Rule 2. Therefore, Pj

WJ -
i

j
may not take its next action. But this is true
for all the processes. Since no process may take
its next action, there is no time tj at which
Pj is not potentially blocked (i.e., the situation
is not safe).

Theorem 3 If the set of processes P can be arranged in a
sequence P]_, ?2> •••> pn
k e {1, 2, . .. , n-l},

such that for each P^,

P -h P. for j e {k+1, k+2,
J *

then the situation is safe.

, n}, (2)

11

Proof: Suppose that a permutation of the processes has the
property (2). Then relation (1) holds for Pj
(i.e., Pj —H> Pi for every j e N). By Theorem 1,
P^ may complete all of its actions since it cannot
become blocked by any action it takes and hence
cannot conflict with any other process. Thus, there
exists some moment t' at which P^ can finish
its processing. At moment t', relation (1) holds
for P2> so that P£ may be allowed to proceed to
completion. Continuing in this way, we find that
for each P^ there is some moment t^ at which
P. -h> P, for every 1 e N. j k J J

definition A safe permutation is an arrangement of the processes
which satisfies (2).

Corollary 1: If a safe permutation of the processes exists at
moment t, then it is guaranteed that some process
P can take its next action in accordance with the
rules, and the situation will be safe at moment t+1.

Proof: Follows from Theorem 3; in fact, is merely a restate-
ment of Theorem 3 to make explicit the guarantee
that some process may take its next action without
causing the situation to become unsafe.

Theorem 4 Assume that the next action of each Pj^ is to
increase W^ to Vfc. Then the set of processes is
safe if and only if a safe permutation of the pro-
cesses exists.

Proof: If a safe permutation exists, then the situation is
safe by Theorem 3. Conversely, assume that the
situation is safe at moment t = tQ. By Theorem 2,
there is some process which is not potentially
blocked by any other process. Call this process
Pi. (If more than one exists, select any one.)
Let Kj = {Pj : j ^ 1}. Let Pi proceed to com-
pletion, say at time t'. By Theorem 2 at time
t = t', there exists some process in K-^ which
is not potentially blocked by any other process in
K-,. Select one such process and name it P£- At
tii me t = t (2) clearly holds for P2. Continue
by induction, eventually constructing a permutation

o>

Pi. ?2 n which satisfies (2) at time t = tc

12

definition A loop in _P = {?lt P2, . .. , Pn> is a set of dis-
tinct processes P|, P£, ..., P£ (k 2. 2) such
that P{ •+ P£ -+ . . . •+ P£ •+ Pj_. If no loops exist
in JP, then P_ is said to be loop^free.

Lemma 1: If the set of processes P_ is loop-free, then
there exists some process which is not blocked by
any other process.

Proof: Assume the lemma is false
3i(j)
say

Then, for every j,
such that ?i(i) •* Pj • Pick any process,

P[. Let Kx = P - {P{}. Then, there exis ts
some process, say P2, in K^ such that P£ •* P]_.
Construct K2 = Ki - {P^} and pick P$. Continue
in this way; at each step of the process if we pick
the next process from KJ (by K we mean comple-
ment of the set K) that introduces a loop. Even-
tually we may come to ^-1 which contains only
one process; this process, by assumption, is blocked
b^y some other process, but the latter must be in
K n so that a loop exists. n-1 r

Theorem 5 If the set of processes
situation is safe.

P_ is loop-free, then the

Proof: Assume the set is loop-free. Then there exists
some process, say Pi, which is not blocked by

Let Ki = {PH 1*1} No any other process,
loop exists in K-^; hence, there exists some pro-
cess, say P2, which is not blocked by any other
process in K]_. Continuing inductively, we can
construct a safe permutation. Hence, by Theorem 3,
the situation is safe.

Theorem 6 Assume that the next action of each Pi, is to
increase W^ to V^.
only if it is safe.

The set is loop-free if and

Proof: Assume the set is loop-free. Then it is safe by
Theorem 5. Conversely, assume it is safe. By
Theorem 4, a safe permutation, say IT, exists.
Now assume that a loop exists, say

Pi P2 Pk
P'

13

By relation (2) , P| must precede P* in TT for
j e {i+1, ..., k} and Pk must precede P^ since
P' •*• P'. So we have that both k 1

P' precedes P' in TT and

P/ precedes ?l in TT

which is impossible. Therefore, no loops exist.

Corollary 2:

Proof:

Assume that the next action of each P^ is to
increase W^ to Vfc. Then a safe permutation exists
if and only if the set P_ is loop-free.

Follows from Theorems A and 6.

Theorem 7 A safe permutation of P_ exists if and only if
P_ is loop-free.

Proof: Assume that a safe permutation exists, say TT.

Now assume that a loop exists, say

PI P' 2
pi _>. p»
*k r

for
in

By relation (2) , P| must precede Pi in TT

j £ {i+1 k}. Also, P£ must precede P{
TT since P£ •»• Pj_. So we have that both

P{ precedes P' in TT and 1 k

P' precedes Pi in TT

which is impossible. Therefore, no loops exist.
Conversely, assume the set is loop-free. Then
there exists some process, say Pj, which is not
blocked by any other process. Let Kj = {P^ : i ^
No loop exists in K^; hence, there exists some
process, say ?2> i-n ^1 which is not blocked by
any other process in K^. Continuing inductively,
we can construct a safe permutation.

1}.

Theorem 8 The assertion "the situation is safe if and only if
a safe permutation of the processes exists" is false.

14

Proof: The proof is by counterexample. Let P_ = {P-^, P2}.
Suppose that at moment t = t0, the situation is
safe while ?^ •+ P2 and P2 •*• P]_. To show that
this is possible, we give a representation of
W]_» W2, V]_, and V2 at time t0 and a list of
actions for P^ and ?2 which show that P^
reaches some moment t^ > t0 at which it is not
potentially blocked by any other process. Let
W]_, W2, Vj_, and V2 be as follows:

(W,)

(V.) (V.J

(W,)

The next actions for P are:

t + 1: P, reduces W, to the empty set
o 1 1

t +2: P„ increases W„ to V„
o 2 2 2

t +3: P„ reduces W„ to the empty set 0 2 2

t +4: P, increases W, to V,
o 1 11

t +5: P_ finishes
0 2

t +6: P- finishes
o 1

15

t0 + 1, P2 is not blocked by any other At time
process. At time
any other process. Thus, the processes are able to
complete their actions without conflict or deadlock.

to + 3, ?i is not blocked by

Yet, no safe permutation exists at time t. There
are two permutations, neither of which satisfies
the relation (2).

Corollary 3: The assertion "the situation is safe if and only if
the set of processes is loop-free" is false.

Algorithm g Algorithm a is given, whereby a safe permutation
may be chosen. Assume the situation is safe and
that a safe permutation exists at moment t = t0.
Further, suppose that process P^ wishes to change
its state. Then, pretend that P^
its state so that we are at moment

has so changed
t„ + 1. To

find a safe permutation, proceed as follows: Look
for any process for which relation (2) holds; i.e.,
suppose we pick P^, then

i ^ ?i for j e {2, ...» n}.

Among the remaining processes, pick any process
for which relation (2) holds and designate it P^.
Continue in this way. If, after k steps of this
procedure, we are unable to find a next qualifying
process, then we may stop looking for a safe permu-
tation since none exists. We prove the last asser-
tion in the form of:

Theorem 9 The algorithm, a, decides uniquely whether or not a
safe permutation exists.

Proof: Suppose that after k steps through a there is
no next qualifying process. That is, we have con-
structed partial permutation TTQ = Pj, P^, ..., P£.
Then, there are at least two processes in P_ which
do not appear in T0, since otherwise we should
have succeeded in finding a safe permutation. For
this set of processes, which we designate as P_' ,
there is no process which is not potentially blocked
by any other in the set, since if there were, we
should have succeeded in getting to the k + 1 step

16

of a. Moreover, by Theorem 7, a loop exists in
P_' ; hence, a loop exists in P_. Therefore, no
arrangement of the processes can satisfy relation
(2); i.e., there is no safe permutation.

Theorem 10 Let a safe permutation exist at moment tQ. If, in
the application of algorithm a to determine
whether or not a safe permutation exists at t0 + 1
if we allow P^ its next action, it turns out that
Pk is chosen, so that we have a partial permutation
pl» p2» •••» Pk f°r which relation (2) holds (i.e.,
for each j e {1, 2, k} P± -/-> Pj for
i E (ji j+l» •••» n}, then a safe permutation exists
at t0 + 1 if we allow P^ its next action.

Proof; Assume we have arrived at partial permutation

7T0 = P]_, P2» • • • » Pk*

At time t0 there were no loops since a safe per-
mutation existed. Assume that there is no safe
permutation at tQ + 1. Then, by Theorem 7, a loop
exists in the set P_' = P - {Pj^, P2, ..., PjJ.
Since P^ alone has been assumed to cause time to
move from t0 to t0 +1, its action must have
generated the loop in P_'. But this is impossible
since TT0 guarantees that P^ is not blocked by
any process in P_'. Thus, our assumption that no
safe permutation exists at t0 + 1 leads to con-
tradiction.

Let (P, J)) denote a system, where P is a set of processes
(Pi, P2 P11) aru* D is a data base (S, R), on which we
impose the conditions:

1) the processes obey the rules 1 through 3;

2) the system, during a run, will allow an action by P e P_
only if the resulting situation is safe as determined by
algorithm a;

3) in case a process may not take its next action, it is
stopped in its processing; it is allowed to proceed at
some subsequent moment only if 2) is satisfied; the decision
to try to restart a suspended process may be determined by
any method—it must only be guaranteed that the effort to
restart will be made within a finite amount of time.

17

Then (P, D) is a system of processes which harmoniously cooperate
in the processing of a common set of data. This is stated in the
form of:

Theorem 11 The processes of the system
harmoniously.

(P, D) cooperate

Proof: It is clear from Rule 2, Theorem 3, Corollary 1,
and conditions 1) and 2) that conflict and deadlock
do not occur during a run of the system (P_, D)
and that at each moment during a run of the system
some process may take its next action. Since the
set P_ is finite and processes which have finished
do not become engaged again and since condition 3)
guarantees that a suspended process will get another
chance to continue processing, every process may
get another chance to continue processing, every
process may get access to all elements of S which
it had claimed and will finish in a finite amount
of time. Thus, (P_, D) is a system of harmoniously
cooperating processes operating on a common set of
data.

18

SECTION III

THE MODEL APPLIED TO A SET OF COBOL PROGRAMS

INTRODUCTION

The abstract model of Section II can be realized in a variety of
ways. We present here a specific description of a realization and
restate the material of Section II in prose form, wherein the reader's
intuitive notions replace the formalisms and proofs of the previous
section.

STRUCTURE OF THE DATA

The abstract model of a data base D = (S, R) is interpreted
as follows:

Let the elements of S = {a, b, c, ...,z} represent
files in the COBOL sense. Let the relation R represent
ordinary identity. Thus, a R b means a = b; i.e., a and
b are the same file. Then we have the simple result that
subsets T and U are comparable if, in the ordinary set-
theoretic sense, TO U j <j>; this means simply that T and
U both include at least one file in common. For example, if
T = {a, b, c} and U = {c, d, e} then T *-*• U since the
file c is a member of both T and U.

COOPERATING PROGRAMS

We replace the term "process" with the term "COBOL object pro-
gram." Our consideration now turns to the cooperation of a finite
set of COBOL programs operating concurrently on the data base
D = (S, =) described above. The same constraints on the COBOL pro-
grams apply as were applied to the abstract processes: in particular,
each COBOL program takes a finite number of actions so that it is
guaranteed that a program, once begun, will terminate its processing.

19

CONFLICT AND DEADLOCK

Let C = (C^, C2, C3, ..., Cn) be a finite set of COBOL programs
operating on p_. Let each C^ have associated with it some subset
W^ of S at each moment during its run. W^ contains all the files
in S which C± is currently processing in any way: C^ may be
reading, creating, updating the files in W^.

We may now describe conflict between two COBOL programs of C_
quite easily; C-^ and Cj conflict if both of them are currently pro-
cessing at least one file in common. For example, while C-^ is reading
file e, Cj may be updating it - this is conflict. Conflict now
has a real meaning: clearly, the file read by C^ may be an unpre-
dictable mixture of the old file e (before Cj did its updating)
and the new file e (after Cj did its updating), so that the
information delivered to Ci is inconsistent. In practice, conflict
may be even more severe than this. If both programs are updating
the same random file and affecting the same index to that file, con-
tamination may even affect the system which runs the programs so that
the data base gets beyond repair.

Suppose we make the rule:

"C^ may not change its associated W-^ if the change would
cause it to conflict with some other COBOL program."

This provides protection from conflict but allows deadlock to occur,
as we show in the following example:

Suppose that C^ is processing files a, b, and c
and that C2 is processing files d, e, and f. Clearly
C^ and C2 are not in conflict. Now suppose that program
Cj., in order to complete its run, must have access to file
d while not relinquishing its hold on a, b, and c and
that program C2 similarly must have access to file a.
When program C^ asks for access to d, the request must
be denied, for to grant it would cause C^ to conflict
with C2, so that C^ must wait for file d to be released.
Similarly, C2's request for file a must be denied so
that it waits also. We have now a deadlock, C^ waiting
for C2 and vice versa so that neither will ever finish.

We certainly must avoid such a situation; at the same time,
however, we do not want to impose rules on the programs which are so
restrictive that we effectively would eliminate shared use of the
data base.

20

To this end, we associate with each COBOL program another subset
of the files in the data base. This subset, which we have denoted by
V, tells the system in which the programs run what files may at some
time be simultaneously needed by each program during its run. For
example, if for C]_, we have V^ = (a, b, d, f, hi, this means that
during a run of the COBOL program C^ it may simultaneously have
open all the files a, b, d, f, and h. On the other hand, it may not
have all the declared files open simultaneously; that is, it may do
something like the following:

PROCEDURE DIVISION.

OPEN a.

OPEN b,

OPEN d.

CLOSE a.

OPEN f.

CLOSE b.

OPEN h.

CLOSE d.

21

CLOSE f.

CLOSE h.

<end>.

so that at no time does it have all the files in V open at the same
time. However, such information is not supplied. We assume the
worst case - that all the files may be open simultaneously.

How does the subset V become established? In COBOL the subset
V is implicitly identified in the INPUT-OUTPUT SECTION. section,
FILE-CONTROL, paragraph, wherein each file to be used by the program
is named in a SELECT statement. The compiler need only make an
explicit V-list declaration a part of the object program, so that
V-L for Ci may be established by the system before C^ takes its
first action.

The subset W^ associated with a C^ is dynamically maintained
by the system in which C^ runs. W^ at any moment during a run of
Ci is a list of all the files which C-^ has open (i.e., files for
which Ci has issued an OPEN but not a CLOSE).

Note the following important restraint imposed by the model of ,
Section I: The COBOL programs are not allowed to use the COBOL LINK
statement since this might, in effect, increase the associated V.
This is a particular form of the general constraint that all the
programs in £ are independent of each other except for the sharing
of D.

Finally, both Wi and V^ may change during a run of C^ with
the restrictions:

(i) W± C V±;

(ii) if V. is changed to V', then V' C V .

A generic usage to be understood to mean a statement set appropriate
to the specific implementation of COBOL; e.g., ENTER LINKAGE

CALL entryname
ENTER COBOL

22

(i) means that C^ may not OPEN a file which has not been declared
to be a member of V^; (ii) means that C^ may reduce the set of
files on which it has established a claim but may not add files to
its claim list (i.e. , the list of files given by its associated V)
during a run.

POTENTIAL BLOCKING

With the establishment of a W and a V for each program, we
have made it possible for the system to detect impending danger of
conflict and thereby to avoid deadlock.

Consider an example. Suppose for COBOL program C-, we have
Vj_ = (a, b, c) and for COBOL program C2 we have V2 = {c, d, e}.
Let Wi = {c) and W2 = (d). We can see the imminent danger here,
for C2's next action may be to request the use of c. Notice that
W^ H V2 f <t>: that is, c is a member of both W^ and V2. In
such a case, we say that Ci is potentially blocking C2, for
should C2 request c, the request would be denied and C2 would
in fact be blocked in its attempt to continue. This, in itself, is
not disastrous; but it is important to know that C^ is potentially
blocking C2 for if C2 were also potentially blocking C]_, then
the danger of deadlock would exist. Consider the example:

V = {a, b, c}

W = (b)

V2 = {b, c, d}

W2 = {c}

(our notation which says C^ is potentially blocking C2)
b is in both W^ and V2. C2 "*" Ci because c is in both
V]_. If the next actions of C^ and C2 are to request use

because
W2 and
of c and b, respectively, then C^ and C2 are in a deadly
embrace (deadlocked). Notice also that at the moment we have a loop
of potential blocking:

Also, C and are not in conflict; w n w2 - <f.

23

THE SAFE SITUATION

We now explain the safe situation in terms of C_ and J). The
programs of C^ are in a safe situation at moment t if every program
can have simultaneous access to all of the files in its V-list within
a finite amount of time. This can be said more precisely in terms of
our notion of potential blocking: The programs are in a safe situa-
tion at moment t if for each program C^ the moment tfc > t can
be reached at which it is true that Cfc is not potentially blocked
by any other program; at the moment t^, no process is using any of
the files in Cfc's V-list so that Ck can get access to all the
files it had claimed and can finish its processing.

RULES OF COOPERATION

The rules of cooperation given in Section I are restated in
terms of C_ and D.

Rule 1: Each COBOL program C^ begins operation with an established
list, V±, of files which it may require and an associated
list, Wi, of files which it has open; initially, W^ is
empty.

Rule 2: A COBOL program may not open a file if the file is already
being used by some other COBOL program.

Rule 3: With respect to the files which a program C is using or may
use, the program may change its state in one of three ways:

(1) C finishes, making V and W empty;

(2) C changes W by opening or closing a file, but only
a file which was declared in its V-list;

(3) C changes V by deleting entries; this means it will
never in the course of the rest of its run require the
files whose names have been deleted from its V-list.

"A mechanism for reducing V-list does not currently exist in COBOL;
a new statement set would be required to implement this capability.

24

With respect to the file actions indicated, we must retain the
condition that only one program at a time takes an action; however,
as for other activity we do not care if many programs take actions
simultaneously as might be the case in a multiprocessor environment.
With respect to Rule 2: We do not expect the COBOL program to decide
whether or not it can safely open a file; rather, when the program's
OPEN statement is encountered, the system must inspect the situation
and decide whether or not to allow the program to open the file. If
it is decided that the program cannot open the file, the system must
suspend the program and restart it when the situation clears up. One
way to trigger the restart is to have the system inspect a queue of
suspended programs to find a candidate for restart every time a file
is closed.

HARMONIOUS COOPERATION IN (C, D)

As was suggested in the previous discussion, the system in which
(C, D) is embedded becomes involved with the management of the pro-
grams in C. In particular, the system must take cognizance of every
action having to do with the declaration, opening, and closing of
files; in addition, the system must maintain a queue of suspended
programs—i.e., those programs which have attempted to open a file
but which have been denied access temporarily.

The theorems of the previous section give us a method whereby
the system may determine whether or not it is safe to allow a particu-
lar OPEN to be executed. The method was designated algorithm a, and
it was shown in Theorem 9 that the algorithm determines uniquely
whether or not a safe sequence of the programs exists. A safe sequence,
say

Cl» C2' ••" Cn

of programs in C means that

1) for Ci it is true that no other program currently has open
any file in C 's V-list;

2) for C2 it is true that none of the programs C3, C4, ..., Cn
has open any file in its V-list;

3) in general, for Ci it is true that no other program Cj
where i < j £ n has open any file in Ci's V-list.

25

Algorithm a shows how the system may construct a safe sequence:
the system picks any program which can qualify as a Ci in the example
above, then looks for any C2, and so forth. In addition, Theorem
10 shows that a computational shortcut exists, so that the system
need only construct a sequence up to the point where it contains the
program which is requesting the opening of a file.

Finally, Theorem 7, which shows that a safe sequence exists if
and only if C is loop-free, means that an alternative algorithm
for deciding safety in terms of a directed graph exists.

DISCUSSION OF THE SYSTEM (C, D)

The system (C, D) has the characteristic that the programs
may operate concurrently on a data base while it is guaranteed that
conflict and deadlock will not occur; this means that no program will
ever get stuck in its processing and that the data base will never
suffer loss of integrity.

However, we should expect that for most multi-user systems, the
system (C, D) will be unacceptable on a number of counts. The
system (C,]))

1) makes no provision for a dynamically changing set C_: that
is, it does not allow that programs (processes) may enter
and leave the system from time to time;

2) makes no provision for the special case wherein a set of
programs could safely concurrently read the same file;

3) does not coordinate the data sharing with resource sharing
(another source of conflict and deadlock);

4) uses the file as a unit of lock-out: the file might prove
too gross a unit for many applications;

5) makes no provision for the user to make strategy decisions
which could optimize system use and performance for a given
application.

Undoubtedly, the reader can add to this brief list. Nevertheless,
we have so far achieved the result that we can define a system which
behaves in a pre-determined way to avoid the problems of conflict and
deadlock in concurrent use of a data base. We have now to refine,
extend, or otherwise change our model as we attempt to eliminate those
characteristics of the system which are undesirable.

26

SECTION IV

EXTENSION OF THE MODEL

INTRODUCTION

In this section the model of Section I is extended to distinguish
read-only use from read-write use of elements of S and to allow a
dynamically changing set P_.

EXTENSION TO ALLOW INCREASED SHARING FOR READ-ONLY USE

Conflict and Deadlock

Let P_ = {P^, P2» •••» Pn^ De a set °f processes operating on
D. Let each Pi have associated with it a subset R± of S at
each moment of its engagement. The subset R± is to be understood
to contain all elements of S which Pi is currently using but not
changing: that is, r E R^ guarantees that Pi does not change r
in any way—thus, R^ represents a read-only set of elements with
respect to Pi (we allow that some Pfc may wish to claim an element
of R± for read-write use). With each Pi we also associate a sub-
set Qi which establishes a bound for Ri, just as Vi establishes
a bound for Pi's associated \H±.

We re-interpret the subset Wi to include only those elements
of S which Pi may change during its engagement.

We have:

(i) W± C V±

(ii) if V is changed to V' then V' C V.

(iii) R± c Q±

(iv) if Qi is changed to Q^, then Qj C Q^ and we impose,
additionally,

(v) V. 0 Q = <f>.

Note that (v) implies R fl W = <{>.

27

definition P. conflicts with P if

R. «-+ W , or

W± -*-> R , or

W. ++ W..
i J

Thus, we now allow Ri ++ Rj during a run of P-^
and P .

notation Let R^ U Wi be denoted by RUWis and

Q. u V. be denoted by QUV..

Potential Blocking

definition P. •*• P. if i + j and
 i J

R. «-+ V., or

W\ •«-> QUV.

The Safe Situation

The definition of the safe situation is the same as in Section I.

Rules of Cooperation

The rules of cooperation are restated as follows:

Rule 1: Each process P begins operation with a bound V on its
W and a bound Q on its R, with R = W • <f>.

Rule 2: A process P may not change its associated R or W if
the change would cause it to conflict with some other process.

Rule 3: At each moment of time, one of the processes, say P, takes
an action, changing its state in one of four ways:

(1) P finishes, reducing R, W, Q, and V to the empty set,

(2) P changes R or W, subject to R£Q and W C V.

(3) P changes Q to Q' or V to V', subject to
Q' CQ and V' C V.

(4) R, W, Q, and V remain unchanged.

28

Harmonious Cooperation in (P, f£)

Theorem 12 Let P change its state according to Rule 3. If in
the new state Pj_ -> P, then this was true in the
old state as well.

Proof: Pi •* P means %-«->- V or
Wi *-+• QUV' , where V' and

the bounds for P after its state change.
Q' are

Suppose that R^ •*-*• V' ; then 3 r e Ri and
such that
that R±

' e V
- v'. But v' E V since V c V so
and Pf •+ P in the old state as well,

Suppose that Wi -*->- QUV'; then 3 w E Wi and
s' E QUV' such that w +-+ s *. Since Q* fl V = <\>,
we have s1 E Q1 or s' E V' but not both. If
s' E Q', then s' E Q since Q' c Q and Ri -«-> Q.
If s' E V', then s' e V since V' c V and
Ri +-*• V. In either case, Ri «->• QUV
Pi •* P in the old state as well.

so that

Theorem 13 Assume that the next action of each Pk is to
increase Rk to Qk and Wk to V^ (i.e., make
Rk = Qk and W^ = V^). If the set of processes is
in a safe situation at this moment, then there
exists some Pj which is not potentially blocked
by any other process.

Proof: Assume the theorem is false,
j 3 i(j) such that P±(•>

Then for every
P. at this moment,
J

i(j)
implies R

Suppose Ri(j)
we have Ri(j) Wn

i(j)
V
j

or w
i(J)

QUV.

then if Pi makes Wj = 'J'
but this is not allowed by Rule 2,

Suppose that Wi(j)
or Wi(j) Vi If
Wj = Vj , then either Wi(j) •*->
neither of which is allowed by

i- QUVj ; then either Wi(j)
Pj makes Rj = Qj and

Qj

Ri or w Kj) W J '
Rule 2. Therefore,

we have that Pj may not take its next action because
of Rule 2. But this is true for all the processes.
Since no process may take its next action, there is
no time tj at which Pj is not potentially blocked
(i.e., the situation is not safe).

29

The rest of the theorems, corollaries, and lemmas of Section I are
also valid here—they need not be proved since the proofs are not
affected by the changes we have made in our definitions and rules.

Discussion of (P, Jj)

If we allow that some elements of S be identified as read-only
elements, then we may relax the restrictions on the processes. In
particular, it is not necessary to know in advance that a read-only
element of S may be required by a process, and a process's request
for a read-only element may always be honored without fear of deadlock;
the latter statements are contingent, of course, on our allowance that
for any i and j , i ^ j , R± •*-*• Rj is always allowed.

In the model we have defined, the more difficult problem of read-
only use of an element of S has been considered; in the model,
"read-only" is treated as a property of a process rather than as a
property of an element of S.

EXTENSION TO ALLOW A DYNAMICALLY CHANGING SET P

Introduction

In Section I we considered the set P^ to be a fixed finite set
of processes. Harmonious cooperation of the processes was explored
for a single run of the system (P, D) in the sense that

a) all processes in P_ are in homing position to start (W = R = <|>) ;

b) when a process takes the action "finish, reducing W, R, V,
and W to the empty set," it may not begin another run until
all other processes have also finished; and

c) when all the processes have finished, the system (P, D) is
again in homing position, at which time another run of the
system can begin.

In this section we allow for entering and leaving processes in
the set P.

30

Cooperating Processes

We allow for entering and leaving of processes in the set _P in
the sense that

a) a process, having finished, may leave the system;

b) a process may enter the system at a moment subsequent to the
beginning of system operation and may become engaged after
entering; and

c) a process, having finished, may become engaged again at any
subsequent moment.

We retain the conditions:

1) V_, at any moment, is a finite set; and

2) P e P is a process in the sense of Section I.

We relax the condition that the system returns to homing position
after a finite amount of time (makes a single run); rather, we have
that the system begins operation at an initial state (all P e P_ in
initial state) and runs for an indefinite time.

Let us extend the meaning of the system (P^, D) as above and
denote the extended system by (P, D, Ei). Our principal objective
will be to prove a theorem for (P_, jD, Ei) analogous to Theorem 11
for the system (P, D) : that is, we want to show that every process
gets to finish its task within a finite amount of time without con-
flicting with other processes. We cannot prove such a theorem at
the moment for by E^ we have introduced the possibility of permanent
blocking; it becomes necessary to examine more thoroughly the actions
the system must or may take when a process is suspended or is to be
restarted.

Permanent Blocking

Permanent blocking is a condition of a process wherein it is
blocked by the states of the system for an indefinite time from
acquiring access to what it had claimed. While the system (P_, J), E^)
may remain safe from deadlock and may prevent processes from conflicting,
the safe situation does not exist if some process is permanently blocked.

31

Permanent blocking arises out of the extension E]_, as is seen
in the following example. Suppose we have for P_ = {Pi, P2, P3} that
all three processes make an indefinite number of runs and that for each
run Pi has VI = {a}, P2 has V2 = {b}, and P3 has V3 = {a, b}.
Then the system may get into the situation where its allocation states
permanently block P3 as follows:

aQ E W1 = {a}, W2 = <fr, W3 = <J>

al ~ Wl = {a}' W2 = {b}' W3 = *

a2 = W1 = <j>, W2 = {b}, W3 = 4>

a3 E lfi1 = {a}, W2 = {b}, W3 = <t>

a4 E V

P3 is permanently blocked if it has requested access to a and b,
since the request can never be granted without causing conflict.
Notice that in the situation described, a safe situation does not
exist in the system although a safe permutation exists at each moment.
We have, then, that a safe permutation is not sufficient to guarantee
the safe situation.

Suspended Processes and the Scheduler

In order to deal with the problem of permanent blocking, we
formalize the notion of suspension of a process.

Let £ - {Pi, P2, ..., P^}, k< n,

be the set of suspended processes at any moment in the system
(P, D, E]_) .

We postulate the existence of a scheduler in (P, D, Ei) which
performs management services for the processes. The scheduler

1) checks safety of the situation; all attempts to change W
(and R) are made through the scheduler;

2) suspends a process when a request for a data element (change
to W or R) cannot be granted; and

3) restarts a process which has been suspended.

32

With respect to 1)

With respect to 2)

The scheduler uses algorithm a (see page 16)

Let £={Pi, ?2> •••» PfcJ at moment
at moment t0 + 1 some process, say
be suspended, then 5. = {P{» P^> •••>
at moment tG + 1, where P^+i = P-£.
other words, the queue is ordered by arrival; a
new arrival goes to the end of the queue.

to- If
P-L, must

In

With respect to 3)

In addition, we assume that the scheduler also
remembers a process's request when it suspends
a process.

We have not said under what conditions a process
will be restarted, whether or not a priority is
associated with a process, or how the scheduler
goes about deciding that conditions are right for
restart of a particular process. In fact, we
will have to show that, by some scheduling
algorithm, a process will remain in (£ for only
a finite time (does not become permanently
blocked).

Scheduling by Expediency

We have used an implied scheduling strategy heretofore, as in
the recent example of permanent blocking wherein P3 never gets
access to what it had claimed (V = {a, b}). We now state a strategy
explicitly in order to show the characteristic of permanent blocking.

Strategy:

1) every request for a state change involving S is checked
to see that it satisfies Rule 2 and Rule 3 (see page 28) and
that granting the request would result in a safe permutation;

2) whenever such a state change is requested by a running pro-
cess, the scheduler tries first to honor the request of some
P in 4;

3) Q is searched in order of entry of the processes;

4) if a P E ^ is found whose request may safely (by 1) be
granted, then P is removed from ^, its request is granted,
and it may be allowed to run; the running process which
requested the state change enters Q; and

33

5) if £ is empty or no P e £ maY safely be granted its
request, then the scheduler proceeds as usual (i.e., if the
request may safely (by 1) be granted, then the request is
honored; otherwise, the requesting P enters (£ and some
other process is allowed its next action).

(3) The strategy uses the expediency condition, which is to grant
a request if the grant is safe as defined above. The strategy does
not prevent permanent blocking; the example given recently still holds.

In the example, P3 is permanently blocked because it can never
simultaneously get access to both a and b. This suggests that the
situation might be improved if we impose the condition that a process
may request only one element of S per request—this would impose
upon the process the burden of collecting all the elements of S it
needs in order to perform some processing by requesting them one at
a time.

Let us examine the example given previously and then the system
in general with this condition imposed. We had, in the example,

aQ H \J1 = {a}, W2 = * , W3 = <J>

a± = W1 = {a}, W2 = {b}, W3 - «fr

a2 = Wx = 41 , W2 = {b}, W3 = *

a3 = Wx = {a}, W2 = {b}, W3 = <j>

a4 S V

Suppose now that P3 requests a, then requests b, then performs
its processing, and finally releases a and b and terminates.
Then, with the scheduling strategy we have defined, a possible alloca-
tion sequence is:

a0 5 Wl = {a}' W2 = * * W3 = *

a1 = V1 = {a}, W2 = {b}, W3 = <J>

a2 = V1 = <f>, W2 = {b}, W3 = *

a3 i W = <f , W2 = {b}, W3 = {a}

a4 E V1 = 0, W2 = <j>, W3 = {a}

a5 = Wx = *, W2 = +, W3 = {a, b}

ag = V1 - *, W2 - $, W3 - «j)

a? EaQ

34

Thus, no process is permanently blocked in this example. However,
we may construct an example in which P3 is permanently blocked as
follows. Suppose we have that for each run

?± has V = {a, c};

P„ has V„ = {b, c}; and

P_ has V_ = {a, b, c}.

If it happens that Pj_ requests only a during its run, P2 requests
only b during its run, and P3 happens to request c first (before
a and b), then the system's allocation states may permanently block
P3 as follows:

aQ = Wx = {a}, W2 = *, W3 = <f>

a± = U1 = {a}, W2 = {b}, W3 = <f>

a2 = Wx = $, W2 = {b}, W3 - <j>

a3 = Wx = {a}, W2 = {b}, W3 = 41

a4 " V
In fact, these allocation states are precisely thos/e of the first ver-
sion of this example. At no time may P3 be granted its request for
c because we would have either

Px - P3 - Px
or

P2 * P3 * P2"

The characteristic of permanent blocking is that a process is
continually held up because advance knowledge of the constitution of
the set P_ is not available and no special action has been taken to
force an allocation state which will free the process from suspension.

We will next consider how the scheduler may take special action
to ensure that permanent blocking does not occur.

35

Scheduling by Eventuality

We will consider a scheduling strategy wherein the eventuality
condition^) is imposed—that is, we will allow the scheduler to
block a safe request for a finite time in order to force an allocation
state which relieves permanent blocking.

To this end, we define three additional sets; E_, T_, and B_. We
will use 15 to denote the collection of running processes and T_
the collection of new processes entering the system, which have tem-
porarily been blocked by the scheduler from starting. A running process
is one which has been engaged, has not finished the run for which it
was engaged, and is not currently suspended because of a denied request.
(Note that in a multiprogramming environment, a process in E^ may be
suspended by scheduling action related to the multiprogramming, but
we do not consider that here.) T_ is the queue by which we will impose
the eventuality condition. B is a special set which will always
either be empty or will contain exactly one element of P_.

We have then, for every Pi e JP, 1 <_ i _f_ n, Pi e E_ or P^ e ^
or P e T or P e B.

P e E_ means P. is running.

P. e (^ means P^ is suspended awaiting the grant of a request
which had been denied.

Pi e T means Pi has entered the system subsequent to a moment
when the scheduler decided to force an allocation state to
relieve permanent blocking.

Pi E B means Pi was in danger of being permanently blocked
and is now being given special attention by the scheduler.

Define the function q as follows:

q(X) =0 if X = <f>

1 if XMi

where X is a variable which may have the values P_, E_, (£, T, B_.

36

We now state a scheduling strategy, wherein we retain the con-
dition that only one element of S per request be allowed. Strategy
a:

1) Every request for a state change involving S is checked to
see that it satisfies Rule 2 and Rule 3 and that granting of
the request would result in the existence of a safe permutation
of the processes; when these conditions are satisfied, we say
that the request may safely be granted.

2) For P E 15, if the request of P may safely be granted,
then it is granted and P remains in E_; if the request of
P may not safely be granted, then the grant is not made and
P leaves E_ and enters (£.

3) Whenever an element of S is released by a process, the
scheduler performs the algorithm given in Figure 1 (next page).

4) Whenever a process say Pa, becomes initially engaged, the
scheduler performs the following algorithm:

<START>

q (1)

THEN

PUT Ptt IN T

ELSE PUT PQ IN £

f

FINISH

Strategy a may be explained by intuitive appeal. When a process
Pq in (£ is found which had requested an element of S which is
now available but the request cannot now safely be granted, the
scheduler blocks new processes from acquiring elements of S in
order to force a sequence of allocations which will result in the
removal of Pq from ^. During the time that new processes are
being held back, the other processes in E U ^ are allowed to pro-
ceed under the expediency condition—in other words, processes in
^ are not prevented from proceeding whenever they can.

37

IF

(START)

4 <£) • I THEN- •IF REQUEST OF Pk« B IS SAFE

ELSE ELSE THEN

IF

IF q(Q) = I ELSE

THEN

SEARCH 0 IN ORDER OF

ENTRY, GRANTING ANY

REQUESTS WHICH ARE NOW

SAFE; ANY P« £ WHICH

IS GRANTED ITS REQUEST

IS MOVED FROM Q TO E

q(Q) • I ELSE

THEN

SEARCH Q IN ORDER OF ENTRY

LOOKING FOR FIRST P, « Q FOR

WHICH IT IS TRUE THAT THE

ELEMENT REQUESTED BY P, IS

AVAILABLE AND GRANT OF

REQUEST TO P, IS NOT SAFE

8

GRANT REOUEST OF Pk ;

MOVE P. FROM B TO E
D — —

IF q(T) ELSE

THEN

MOVE ALL P« .1 FROM

ITOE

•FINISH'

THEN

IF NO SUCH P EXISTS IN _Q_

ELSE

i
MOVE P, FROM OTOB

Figure 1. Scheduler Algorithm: Release of an Element

38

Harmonious Cooperation in CEt H, El)

Let (P, D, Ei) be a system wherein strategy a is used by the
scheduler. Then (P, D, E^) is a system of processes which harmoniously
cooperate in the processing of a common set of data. We show this in
the form of

Theorem 14 The processes of the system (P, I), E^) cooperate
harmoniously.

Proof: It is clear that conflict and deadlock do not occur
and that at each moment during the operation of the
system some process may take its next action. We
have only to show that for any Pq E £, P„ remains
in ^ for a finite amount of time. First, we show
that for P[e (£, ?[remains in £ for a finite
time. P[E ^ means that at some moment P| requested
s' e S but was denied grant and placed in (£.
Either s' is in use by some process, or it is
available when we inspect the situation, say at
moment t\. If s' is in use at tJ, then within
a finite time it becomes available, say at moment
ti+k* In anY case, within a finite time the
scheduler will find the condition P| e £, Pj[had
requested s', and s' is available. If it is
safe to grant the request of P], then Pj leaves
^ to enter E_. If it is not safe, then the
scheduler inhibits engagement of new processes, so
that Pj leaves (£ within a finite time, as has
previously been proved in Section I.

When ?2_ leaves (£, P£ becomes P{, etc. Thus,
for any Pq e ^, Pq remains in Q for a finite
amount of time. Thus, (P_, D, E^) is a system of
harmoniously cooperating processes operating on a
common set of data.

39

SECTION V

A REPRESENTATION OF THE SYSTEM (P, D, E)

INTRODUCTION

In this section we develop a representation of (P, p_, E^) which

a) shows the states of the system and the possible transitions
among the states,

b) describes the strategy, a, for prevention of permanent
blocking, and

c) constitutes a partial specification for a simulation of the
system.

STATES OF A PROCESS IN (P, D, E)

We describe the progress of a process through the system (P, D, E).
For an arbitrary process, Pa, we define a set of comprehensive,
mutually exclusive states as follows:

P E : P is attempting to enter the system.
a a

P E : P e E-i.e., P„ is running (subject to temporary suspen-
sion due to multiprogramming).

p„2. : ^ e ^~i-e., Pa is suspended because a request for an
element of S could not safely be granted; P
is waiting to get its request and continue.

P B : P e B-i.e., P~ is getting the special attention of the
scheduler, which is trying to force an allocation
state which will cause the transition of P into
state P E. a

a—

P T : P e T-i.e., P„ is waiting to transition into state P E;
this will happen as soon as B_ = <J> holds.

P L : P has terminated and leaves the system.
a a

The description of the movement of PQ through the system and
the relationships of its states are shown in Figure 2.

40

PN1

Figure 2. Transition Diagram for a Process in (P, U, E.)

41

The description of Fig. 1 is in the form of a Petri net^ ' for the
reason that the transitions are more explicit (than is usual in state
machine representations). We make the transitions explicit since
most of the transitions of Pa are contingent on the holding of a
set of propositions about the system in general: for example,
P T -»• P E is contingent on the truth of the proposition "B -4."
a— a- —

In Fig. 3 we note the conditions which enable the transitions among
the states of P .

STATES AND BEHAVIOR OF THE SYSTEM (P, £, E)

A number of different notational schema for describing the states
of the system, its behavior, and the relationships between states and
actions in the system are possible. Two formal systems are of parti-
cular interest in this respect—Petri nets'^) and graph programs. (->)
The author has found that the formalisms and intended semantics of
these systems do not allow for the easy representation of states,
state transitions, and algorithms in one descriptive notation. On
the one hand, a Petri net provides a convenient method for represen-
tation of states and state transitions; on the other hand, a graph
program is a convenient way to represent an algorithm.

Hence, we develop in this subsection a specialized notational
schema to represent both the states and the behavior of the system
(P, D, E1).

We define a function c as follows: c(X) = number of elements
in X» where X has the domain {P, E, £, B_, T}. The relation

c(P) = c(E) + c(.Q) + c(B) + c(T)

always holds in the system. We define states of the system as follows:

SI: c(P) = 0

S2: c(E) > 0 and c(T) = c(£) = c(B) = 0

S3: c(E) > 0 and c(£) > 0 and c(T) = c(B) =0

S4: c(E) > 0 and c(£) > 0 and c(B) = 1 and c(T) = 0

S5: c(E) > 0 and c(B) = 1 and c(QJ> = c(T) = 0

S6: c(E) > 0 and c(^) > 0 and c(T) > 0 and c(B_) = 1

S7: c(E) > 0 and c(T_) > 0 and c(B) = 1 and c(Oj = 0.

42

PN2

[THE ELEMENT REQUESTED
BY Pa HAS BECOME AVAILABLE

BUT CANNOT SAFELY BE

GRANTED

CEai>-
>]

(THE

ELEMENT

REQUESTED

BY Pa

CAN SAFELY
BE GRANTED]

Figure 3.

Transition Diagram for a Process in (P, D, E,) Showing Contingencies

43

SI through S7 are a set of alternatives for the system—i.e.,
one and only one state holds at any given moment. The possible transi-
tions among these states are shown in Fig. 4, which is annotated with
contingency conditions for the transitions.

We will show the behavior of the system in Fig. 5; explanation of
the notational devices and some additional definitions are required
first.

Define the four actions:

Al: a process enters the system.

A2: a process requests loan of a claimed element of S.

A3: a process returns to the system an element of S it had
borrowed.

A4: a process leaves the system.

Define notation as follows:

SXJ : denotes a state of the system, SX domain is Si
through S7.

+ denotes a transition with an accompanying action
usually noted.

:A : : denotes an action A1-A4.
x

C : used as a line connector; has no other meaning.
x

• I'll : denotes that one and only one of the multiple
transitions will occur, depending on conditions

¥
(to be noted).

: when two or more arrows arrive at a transition,
the transition occurs when and only when source
conditions are all simultaneously satisfied.

44

PN3

O
n
•n
m

i

[Cl] : A PROCESS ENTERS THE SYSTEM.

[C2]: C(E.) REDUCES TO ZERO.

[C3J: A PROCESS REQUEST IS DENIED RESULTING IN C(Q) * 0.

[C4J: AN ELEMENT OF S IS RELEASED AND C(Q) REDUCES TO ZERO.

[C5]: AN ELEMENT REQUESTED BY SOME P#Q. IS RELEASED BUT
CANNOT SAFELY BE GRANTED TO P. "

[C6]: THE ELEMENT WANTED BY PcB CAN SAFELY BE GRANTED.

Figure 4. Transition Diagram for States in (P, JJ, E^)

45

A4:

in this example, when the system is in state S3,
it will transition (either 1, 2, 3, or 4)
depending on which action occurs; recall that in
(P_, J), E-^) one and only one of the actions A1-A4
may occur at any moment.

()

t
o

statements or strings of symbols enclosed in
parentheses denote actions taken by the system-
the action symbols are defined below.

has no meaning; is a shorthand notation for

o
I] statements or strings of symbols enclosed in

brackets denote propositions about the system;
these will be associated with transitions, a
transition occurring only when its associated
proposition is true.

For example:

Ic(2)=0] lc(£)*0]

in this example, transition 1 occurs if Q = <j> ;
otherwise, transition 2 occurs,
note, one of the two transitions must occur, but
only one will.

Function notations

+X means add a member to the set
is determined by context:

X, the member

+X =* c(X) +• c(X) + 1

46

-X : as for +X except remove instead of add a member:

-X => c(X) *• c(X) - 1

g(a) : means make a loan or loans to the process a
or the processes in the set a for which the
loan is safe.

For example:

g(P) means grant the request (allocate the element of S) to
process P, .

b

g(^) means grant the requests of any members of (J. for which
the granting of the loan is safe, any such member is to
leave ^ and enter IS, and the size of Q and _E are
to change accordingly.

Special notation:

P will denote an arbitrary process; when used in context, it
indicates the process of the context; for example:

g(P) means grant the request of the process which has
requested an element of S.

P will denote that process P for which it is true that either

P e Q, the element s requested by P is available (in
the sense that conflict would not exist if s were
allocated to P), and the grant of s to P is
not safe,

or P e B.

S : denotes the statement "grant of request is safe."

NS : denotes the statement "grant of request is not safe."

R(P) : denotes "request of P."

The compounded symbols R(P)S and R(P)NS have their obvious meanings—
"grant of the request of P is safe" and "grant of the request of P is
not safe", respectively.

47

Fig. 5, a description of the behavior of the system (P, D, E^),
can now be presented. Although it is equivalent to the description
of the previous section, it has the distinct advantage over the
previous description that it exhaustively shows the states of the
system and all possible transitions in a compact form.

48

[c(Q>-*]

O

m"

I
o

N4. DESCRIPTION OF SYSTEM (f.P.Ej)
SHEET I OF 3

Figure 5. Description of the Behavior of the System (_P, D, E1)

49

CO
o m
in
ro

I
o

t—(+TJ -M-

S] l[NS]
(9(Pa» -f-(+Q)

C4

*- -M-(-E)

[R(P„« BINS] [R(Pb«B)S]

C2

N4. (CONTINUED) DESCRIPTION OF THE SYSTEM (P, D, E,)
SHEET 2 OF 3

Figure 5. (Continued)

50

o
to

m"
ro

I
o

[R(Pb.fi)NSJ

•(g (P„)>- B , + £, £ — J.UT,

e(E) — c IE) + c (T),T — 4>)

[R(Pb« B)S]

--<g<P„>.- B,+E, E— E uT,

e(E)~- c (E) -t-e(T), T — *.)

N4. (CONTINUED) DESCRIPTION OF THE SYSTEM (P, D, E,)

SHEET 3 OF 3

Figure 5. (Concluded)

51

SECTION VI

THE EXTENDED MODEL APPLIED TO A SET OF COBOL PROGRAMS

INTRODUCTION

In this section we consider four of the five shortcomings of the
system (C_, D) discussed in Section III. We will not deal here with
units of lockout other than the file; this matter is reserved for
consideration in Section VII. We will consider:

1) a dynamically changing set C,

2) multiple concurrent reading of the same file,

3) coordination of data and other resource sharing, and

4) strategy decisions available to the application designer.

As background to these four considerations we will discuss, in the
next sub-section, the general requirements imposed upon the COBOL
programs by the extended model of Section IV.

GENERAL CONSIDERATIONS

We are concerned with a system (C_, I), E-^) as defined in Section
III and naturally extended by the development in Section IV.

The extension to include differentiation between read-only use
and other use of a file implies the addition of a declarative state-
ment or clause to some section of the COBOL program. This declarative
will indicate whether the program will use a file in read-only mode
or otherwise. A convenient place to include such a declarative clause
would be in the SELECT statement of the FILE-CONTROL, paragraph. The
compiler of the COBOL program could then create explicit Q-list and
V-list declarations as part of the object program.

The identification of files as read-only files might also be
implemented. We do not consider this possibility here because of its
triviality, except to note the following. Since every file must at
some time be created and may at times require updating, the system
designer must take some precaution that during creation or update of
a read-only file conflict and deadlock do not occur and must also
insure that the updater of a read-only file is not permanently blocked
by an unending succession of readers of the file.

52

The constraint mentioned in Section III, that a COBOL program may
not use the LINK statement, still applies in a restricted sense. There
are two ways in which the LINK statement may now safely be used:

1) as a terminating statement of a program, and

3
2) as a CALL, with the condition that the CALLing program has

declared all the files which may be used by itself and all
the programs which may be activated by the CALLing LINK
statement.

1) means that the COBOL program closes all the files which it
had opened; in executing the LINK statement, it causes two things to
happen:

i) it causes itself to leave (C, D, E), and

ii) it causes the LINKed-to program to enter (C_, D, E).

Restrictions need not be imposed upon the passing of parameters from
one to the other of the LINKed programs except, of course, the acti-
vated program could not attempt to open a file whose name had been
given as a parameter if that file had not been declared by it.

2) means that the collection of programs including the one which
first executes the LINK statement and all programs subsequently
activated as a result of the execution of that LINK statement are
essentially to be considered as one program by the system. In this
context it is helpful to think of this collection of programs as one
process. In this use of the LINK statement, the program executing
it expects control to be returned to it upon completion by the pro-
gram to which it had LINKed. While we shall not formally treat such
a capability here, the following implementation suggestions may be
useful. All programs could be partitioned into two classes—process
control modules (PCM) and process modules (PM). The imposition of
the following rules should suffice to avoid problems:

Rule 1: file and other resource declarations are associated only
with a PCM.

Rule 2: a PCM may not call another PCM.

Rule 3: a PCM or a PM may call any other PM.

Rule 4: a PM may not call a PCM.

In this case, "process1

object programs."

is to be considered a collection of "COBOL

53

This method is also applicable in the discussion of Section III.

In the context of a set of COBOL programs, the restriction imposed
by the model that only one file at a time may be opened is no restric-
tion, since a COBOL program may open only one file at a time anyway.

DYNAMICALLY CHANGING SET C

In Section IV we have shown how it is possible to allow programs
to enter and leave the system. We proved that every entering program
gets access to all the files it had declared within a finite amount of
time. In addition, in Section V, we have given a specification of an
algorithm to be used by the scheduler of the system.

MULTIPLE READ-ONLY USE OF A FILE

Section IV dealt directly with the situation that a number of
programs may concurrently be reading the same file. Under GENERAL
CONSIDERATIONS of this section, we showed how the intent to use a
file in read-only mode may be declared by a COBOL program.

COORDINATION OF DATA AND OTHER RESOURCE SHARING

Although resource sharing in general is not a principal concern
of this paper, the proper coordination of resource sharing (other
than data) with the data sharing methodology presented thus far is a
sine qua non for effectiveness of the data sharing methodology. If
a system allows resource sharing (in addition to data sharing), say
of card readers, teletypes, and such, then the possibility of dead-
lock arising out of the concurrent use of such resources and sets of
data by a number of programs must be considered by the system designer.

To see that a problem exists, suppose that a system (C, D, Ei)
uses a strategy for resource sharing which guarantees that conflict,
deadlock, and permanent blocking arising out of the use of the resources
will not occur. Suppose further that the strategies for resource
sharing and data sharing are operated independently by the system—
that is, when a request for the opening of a file is made by a program,
the system decides whether or not to grant the request without consid-
eration of the allocation state of the system with respect to other
resources, and vice versa. Then deadlock occurs in the following
situation. Let program PI have allocated to it resource Rl and file
Fl and P2 have R2 and F2; let PI request F2 and have its request
denied; let P2 request Rl and have its request denied; then PI and
P2 wait forever while the system ignorantly proceeds without them,
thinking that all is well.

54

The solution to this problem for a given system depends upon the
chosen strategy for resource sharing. Presented here,is a solution
in the context of the strategy developed by Habermann."»1' An exten-
sion of that strategy is required in order to prevent permanent block-
ing (see Holt(3)). The system designer may choose to use Holt's
solution'-^) to accomplish this or may convince himself that the strategy
developed in Section IV of this paper will also serve. In any case,
coordination of data and resource sharing is accomplished simply
through the safe permutation (sequence) of programs by requiring that
the permutation satisfy both the requirements

i) (VPk e S) bfc < r(t) + £
s(X) £ s(k)

(see reference (6), page 375), and

cA(t)

ii) for each P, , k e (l, 2 n-l) ,

P.-y»P for j e {k+1, k+2,
J k

(see Theorem 3, Section I).

, n}

Caveat emptorl While I am intuitively convinced that the solution
offered is a correct one, I would not depend on intuition alone for
the design of a real system—rather I should insist on a rigorous
description and proof of such a solution.

STRATEGIES FOR THE APPLICATION DESIGNER

The hypothetical system design developed thus far does not allow
strategy decisions by the application programs designer sufficient to
adapt it to a reasonable range of problem structures. On the contrary,
unless the application is suited to the supposed system, the system
must be considered inadequate in spite of any strategies imposed by
the application programs designer.

Besides the strategy of separating out read-only-data, the appli-
cation designer can encourage the development of programs which keep
non-read-only-use files open for as short a time as possible; the
effect would be to keep blocking to a minimum. However, the situation
wherein a program to update a file must wait until all other users of
the file have relinquished use of it cannot be escaped by strategy
imposed by the application programs designer.

55

The latter, inherent characteristic of the system is its most
serious shortcoming—stated another way, the system does not provide
the potential to achieve effective sharing of data concurrently unless
the data are static.

SUMMARY

As we have seen, the model, directly applied as we have done in
this section and Section III, produces something less than what will
satisfy us.

Good purpose will be served by reviewing what has been achieved
thus far. We have done the basic work required for the production of
a real system which:

1) allows multiple-user data base sharing (although restricted
as we have seen),

2) prevents conflict, deadlock, and permanent blocking among
and of programs,

3) requires only slight modification to an existing, familiar,
applications programming language (COBOL),

4) guarantees the integrity of the data base without qualifica-
tion, and

5) guarantees that integrity of information output can be
achieved.

The fifth point deserves some exposition, especially because it
describes a property of a system which we might be willing to compro-
mise for the sake of achieving some other goal. What "integrity of
information output" means is this—information produced by a program
and derived solely from the data base can be guaranteed to be correct
in the sense that the data extracted from the data base were semantically
correct at the time of extraction (assuming of course semantic correct-
ness at the time of creation). The sense of this guarantee is perhaps
best illustrated by a negative example. Output which is semantically
incorrect can be produced simply by concatenation of data elements
which are anachronistic with respect to each other; many familiar
examples will suggest themselves to the reader. Point 5 says that by
appropriate design of a program, it can be guaranteed that such loss
of information integrity will not occur.

56

If we agree that we are unwilling to compromise the properties
suggested by points 1 through 5, then we are left with only one direc-
tion in which to proceed. Namely, we have the task of increasing the
potential for concurrent use of the data base without giving up the
desirable properties mentioned above.

One method suggests itself—to change the unit of lock-out from
the file to the record. A moment's thought of this, however, will
lead to the conclusion that the method is undesirable. For, consider
what it would mean: one, that all records which might be used by a
program would somehow have to be declared by that program; two, that
upon release of every record the system scheduler would have to go
through the strategy for prevention of permanent blocking; three,
that the scheduler would have to perform the safety algorithm every
time a record was requested.

A seemingly better method is to introduce a third use-mode for
files which will add the following properties to the system:

1) many programs may operate concurrently on the same file in
this use-mode, operation to include changing data in the file; and

2) the application designer will have sufficient strategy latitude
to structure sets of programs which can perform a reasonable
range of applications.

In the next section we extend the model in the direction we have
indicated.

4
In the usual COBOL sense.

57

SECTION VII

EXTENSION OF THE MODEL TO INCREASE POTENTIAL FOR CONCURRENT USE OF DATA

INTRODUCTION

In this section we define a third use-mode for elements of S—
inquiry-use-mode. Rules for the use of elements of S by processes
of P_ in this mode are developed. Finally, as for the extensions
introduced in Section IV, we show harmonious cooperation among the
members of P.

INQUIRY-USE-MODE

We have previously identified two use-modes for elements of S
by processes in P_:

i) read-use-mode, and

ii) write-use-mode.

Read-use-mode allows unrestricted read-only use of an element of S
concurrently by a set of processes in P_; write-use-mode allows
unrestricted use of an element of S by a single process in P_.

Inquiry-use-mode will be defined to allow restricted reading and
writing of an element of S concurrently by a set of processes in
P.

STRUCTURE OF THE DATA

The structure of the data base, D, is extended as follows.
Let each element of S be a finite set of elements.

notation Small Greek letters denote elements of an element
of S; e.g., a, 6, Y»
Since the elements of an element of S, say a e S,
are countable, we can denote a e S by

k

U t«i>
i=l

58

where k is the cardinality of a; the ordering
implied by

k

i-1

is to be considered arbitrary—we wish to identify
elements of a not to order them.
R' will denote a binary relation on the set
US = (a: 3a e S such that a e a}. If a is
R'-related to B, we write aR'B .

definition a and 6 are comparable if either aR'B or gR'a.
We denote this situation by a •*-*• B •

definition We will extend the concept of comparable elements
of S as defined in Section II. If a and b
are elements of S, we will say a and b are
comparable if

(i) aRb;
(ii) bRa; or

(iii) there exist a e a and B e b such that
a •*•*• @.

We will denote this situation by a «-»• b.

remarks If a and b are comparable by the definition in
Section II, they are comparable by the definition
in this section. Also, if a e a, B e b, and
a •*-*• B» then a «-+• b by definition.

semantics The motivation for the introduction of finer
structuring of JJ derives from the discussion of
the previous section. In that discussion, a e S
corresponds to a COBOL file, a e a corresponds
to a record of the file a.

59

CONFLICT AND DEADLOCK

Let (P, D, E1, E•) denote the system (P, D, Ej) extended as
in this section.

Let each Pi have associated with it a subset Ii of S at
each moment of its engagement and let Ji denote the upper bound for
Ii for a run of ¥±. Ii is to be understood to contain all elements
of S which Pi is currently using in inquiry-use-mode.

We have:

i) W. cv

ii) if V is changed to V|, then V! C V

iii) R. <= QJ
1 — i

iv) if Q. is changed to Q' then Q' C Q

v) l±S\

vi) if J. is changed to J!, then J' C J

vii) J , V , Q. are pairwise disjoint (i.e.,

v n j = v n Q = Q n J = *).

Note that vii) implies that Wi, Ri, Ii are pairwise disjoint. Also,
let each Pi have associated with it a set Ki during each moment
of its engagement, the elements of which are those elements of elements
of Ii which Pi is currently using. If b e Ii and Pi is
using $ £ b, then 6 e Ki.

notation Let L/TVW... denote T U V U W ... for any subsets
T, V, W, ... of S.

definition P. conflicts with P. if
 i J

URWI. +-»• W., or
i J

W. *•*• URWI. , or
i J

R. •*•* I. , or
i J

I. *-*• R., or
i J

K. •*-*• K.
i j

60

The relation K^ «-»• Kj means ?± is using some element a,
and Pj is using some element B such that a •*•* 6. We will con-
stitute the rules of behavior for the processes to disallow such a
situation; we must also formulate the rules so that deadlock is
avoided. We have allowed that I± •*-*• Ij may hold during a concurrent
run of Pi and Pj. This means we are allowing, for some elements
c e Ij and d e Ij such that c •*-*• d, that P^ and Pj may con-
currently be using c and d, respectively. We have not established
an upper bound for the set K; at the same time we disallow K^ •*-*• Kj ;
therefore, we must, by means other than foreknowledge of a bound on
K, insure that deadlock cannot occur because of inquiry-use-mode.

To provide an intuitive justification of the rules to be proposed,
consider the following example of deadlock. Let P^ and Pj be
engaged, with 1^ and Ij non-empty. Let these conditions pertain:

a e I

a, 6 e a

X,6 e b

K± = {a}

K = {X}.

Then, if the next action of Pi is to change K^ to {a, 8} and
the next action of Pj is to change Kj to {X, <5}, then deadlock
occurs since we disallow Ki -«-+ Kj , which would be caused by either
action (since a •*-*• <5 and g •*-*• A) . Looking at an earlier time in
the proceedings of Pi and Pj, suppose that at some moment t^
we had Ki = {a} and Kj = <\> and Pj attempting to change Kj to
{X}. At moment t^ we could not tell whether deadlock would occur
as a result of allowing Kj = {X} since no upper bound for K is
given; at the same time, since we allow Ii •*->• I j, the possibility
of deadlock always exists whenever we have Ii •*-»• I j .

61

We therefore impose the rule that K may contain only one ele-
ment at a time; this will avoid the deadlock of the previous example,
but is not sufficient in general. For consider the following example.
Let the situation be as in the previous example with Ki = {a} and
Kj = {A}. With the new rule, Pj is not allowed to attempt to cause
Kj = {A, 6}, nor is Pi allowed to attempt to cause Ki = {a, $}.
Suppose Pj reduces Kj to the empty set and then attempts to cause
Kj = {6}; since a •*-*• 0, we can assume that Pj will be queued,
pending (at least) reduction of Ki to the empty set by P-^. However,
suppose that the next action of Pi (while Ki = {a} holds) is to
request some element v e Vi such that v +-*• w e Wj ; then deadlock
occurs again since Pi will be queued because of its request.

Therefore, impose the additional rule that if Ki ^ <|>, then
the next action of Pi with respect to I) must be to cause Ki = <J>.
In other words, for any Pi, Pi may use only one element of an ele-
ment in li at a time and during the time that Pi is using such an
element it may not request the use of any other elements in S.

POTENTIAL BLOCKING

The definition of potential blocking is a straightforward exten-
sion of the definition of Section III.

definition P. -*• P. if i i j and
 i j

R. ++ UJV. or
i 3

I «-* UQV. or

W. +-* UjQV..
i J

Note that the notion of potential blocking does not include any
consideration of the K's associated with Pi and Pj. This means
that we shall have to concern ourselves with the explicit proof that,
under the rules of cooperation to be stated, some process may take its
next action; that is, it no longer suffices to show that there exists
some process which is not potentially blocked in case the situation is
safe.

62

THE SAFE SITUATION

The definition of the safe situation is the same as in Section II,
repeated here for convenience.

definition The processes of P_ are in a safe situation at
moment t if for every process Pfc the moment
tfc >_ t can be reached at which the relation (1)

P. -/•> P for every j e N = {1, 2, ...,n} holds.

RULES OF COOPERATION

The rules of cooperation are:

Rule 1: Each process P^ begins operation with

a bound V-£ on its W^,
a bound Q^ on its R±,
a bound J± on its Ii,
Ii = Ri = Wi = Ki = •.

Rule 2: A process P^ may not change its associated 1/lRWK-^ if
the change would cause it to conflict with some other process.

Rule 3: At each moment of time, one of the processes, say P, takes
an action, changing state in one of the following ways:

(1) P finishes, reducing UlRWK and UjQV to the empty
set;

(2) P changes UlRWK subject to

i) I C J,
ii) RcQ,

iii) W c V,
iv) I' C I, R' C R, and W c W if K t $,
v) cardinality of the set K may not exceed 1;

(3) P changes U-JQV subject to

i) J' c J,
ii) Q* C Q,

iii) V c V;

(4) UlRWK. and U JQV remain unchanged.

63

HARMONIOUS COOPERATION IN (P_, D, E , E„)

Theorem 15 Let P change its state in accordance with the
rules of cooperation. If in the new state P^ •+• P,
then this was true in the old state as well.

Proof; P± •»> P means R. «-* U(JV)' or

I. «-*• U(QV) ' or

W. «-*> U(JQV)*

where (RST...)' means R'S'T'... and where J*,
Q', and V' are the bounds for P after its
state change.

Case 1: Suppose R± -*-* U(JV) ' then either

R. •*-* J' or

R ++ V .

Subcase 1: Suppose R- •«-*• J'. Then,
3reRi, j+eJ' such that
r •*-*• j*. But j' e J since
J' C J so that R-L *-*• J and
Pj •*• P in the old state as well.

Subcase 2: Suppose Rj_ •*-+• V'. Apply same
argument as for subcase 1,
resulting in Pj •+• P in the
old state.

Case 2: Suppose Ij_ •*-*• U(QV) '. Apply same argument
as for Case 1.

Case 3: Suppose W^ •*-*• U(JQV) '. Apply same argument
as for Case 1.

64

Theorem 16 Assume that the next action of each P^ is such as
to result in R^ = Qk, Ik = Jfc, Wk = V^. If the
set of processes is in a safe situation at this
moment, then there exists some Pj which is not
potentially blocked by any other process.

Proof: The argument is the same as for Theorem 13.

Theorem 17 If a safe permutation of the processes exists,
then the situation is safe.

Proof: Suppose that a safe permutation exists. Then rela-
tion (2), Pj -/-> Pk for j e {k+1, k+2, ..., n},
holds for each k e N = {l, 2, ..., n} and for Pi
it is true that Pj -/-> Pi for j e N. By Theorem
15 and Rule 3, P^ may complete all of its actions:

Theorem 15 guarantees that P^ cannot become
blocked by any action it takes. Also Pi
cannot conflict with any other process except
by causing Ki •*-*• K± for some i E N. Sup-
pose that at some moment it happens that an
action of ?i would result in Ki •*-+ K± for
some I e N. Then P]_ cannot proceed.
However, Rule 3 guarantees that:

i) Pi's next action with respect to I)
can only be to cause Kj_ = $;

ii) P^ may take its next action with
respect to J) since K± ^ 4> implies
that Pi's last request was granted,
so that Pi has not been queued
pending grant of a request.

Thus, let Pi proceed until K± = <f; at this
moment, Pi is still not potentially blocked
since the action of Pi could not cause
P^ •+• Pj_, and Pi may take its next action
since Ki •*-*• Kj cannot occur for any j e N.

Proceed in this way until Pi finishes, say at
time t'. At time t', it is true that Pj -h> ?2
for j e N. Continuing in this way, we find that
it is possible to reach a moment tfc for each P^
such that P, -h> P. for every j e N. j k

65

Theorem 17 does not prove harmonious cooperation of the processes
under the scheduling strategy developed in Section IV, since in the
proof of Theorem 17 we used an arbitrary strategy which forced a state
of the system in which a particular process could proceed. Theorem 17
does show that it is possible for every process to proceed to comple-
tion of its run.

We wish to show in the next theorem that the processes cooperate
harmoniously with the new rules, operating under the scheduling
strategy of Section IV.

Theorem 18 Let (P, J3, E]_, E2) be a system wherein strategy
a is used by the scheduler. Then (P_, D, El, E2)
is a system of processes which harmoniously cooperate
in the processing of a common set of data.

Proof: We must show that for arbitrary Pq £ (J., Pq remains
in 2. f°r a finite time. First we show that
P-f e (£ remains in Q for a finite time. First,
P| e £ implies Kj^ = cf> so that P-[cannot cause
entry into ^ of a process which attempts to
change the cardinality of its associated K from
0 to 1. If ?[entered (£ for the reason that it
had attempted an action other than change to K£,
then P-J leaves ^ in a finite time as shown in
Section IV Theorem 14. If P{ entered £ for
the reason that it had attempted to change cardinality
of K| from 0 to 1, then 3 Pe e E such that Ke
contains the element which Pj had requested.
Since Pe's next action with respect to I) can
only be to cause Ke = 4>, F{ leaves Q upon
release of the element in Ke by Pe« At this
moment P' becomes P.', and so forth.

66

SECTION VIII

THE MODEL (P, D, E , E„) APPLIED TO A SET OF COBOL PROGRAMS

INTRODUCTION

This section extends the discussion of Section VI. However,
in consideration for the reader who may wish to give particular
attention to the system of cooperating COBOL programs without having
to labor through the development of the mathematical model, we shall
use again the approach used in Section III. That is to say, we shall
present a description of a realization of the mathematical model in
terms of a set of COBOL programs, restating the results obtained in
narrative form, wherein the readers intuitive notions replace the
formalisms and proofs of the mathematical model. For such a reader
it will be helpful if he has read the motivating narrative sections
and the statements of the theorems in the discussions of the mathe-
matical model. The reader who has closely followed the development
of the model may wish to skip ahead to the DISCUSSION OF THE SYSTEM
(C, D_, E^, E2) on page 75 of this section.

STRUCTURE OF THE DATA

The abstract model of a data base D_ = (S, R) is interpreted
as follows:

Let the elements of S = {a, b, c, d, ..., z} represent files
in the COBOL sense. For any file f let the elements of

f = {r,. - , r
f,l* rf,2' •*•' rf,k }

represent records of the file f in the COBOL sense. Then we have
the simple result that two COBOL files f and g are comparable if

i) f = g, or

ii) there is some record in f, say rf -£, and some record
in g, say r ., such that r, . = r

g,J f,i g,J

For our hypothetical system we shall assume the usual COBOL data
structuring so that condition ii) implies condition i)—that is,
files are either identical or have no records in common.

67

COOPERATING PROGRAMS

We shall consider a "COBOL object program" or "a set of COBOL
object programs" as discussed in Section VI (see page 53) to be a
"process" and shall simply use the term "program." We consider the
cooperation of a finite set of programs operating concurrently on
the data base p_ = (S, =) according to the rules of cooperation of
the model (to be restated later in this section). Each program takes
a finite number of actions so that it is guaranteed that a program,
once begun, will terminate its processing.

USE MODES FOR FILES

Each program, at the inception of its run, declares to the system
its intention to use some set of files in B (the data base). Included
with the declaration of the file name is a declaration of intended
mode of use. (See Section III, page 22, and Section VI, page 52 for
a discussion of how these intentions might be included in the COBOL
program).

Available to the program are three modes of use:

i) write-mode,

ii) read-mode, and

iii) inquiry-mode.

These modes of use are of great significance to the data-sharing
Scheduler of the system: they provide a set of guidelines used by
the Scheduler in determining which requests for use of a file or
record may be granted and when. From the point of view of the COBOL
programmer, these use modes have the following meanings:

i) write-mode: the programmer wants exclusive use of the
file; when the program has been granted access
to the file, no other program will be granted
access to the file until the program declares
that it is finished using the file (CLOSEs
the file);

ii) read-mode: the programmer wishes only to read the file and
is therefore willing to allow other programs
besides his own to read the file at the same
time; the programs must not change the file in
any way;

68

iii) inquiry-mode: the programmer wishes to both read and update
records of the file; he knows that the records
of the file are independent in the sense that
it is sensible to change only one record at a
time; he is willing to share the file with
other users so long as they obey the same
rules as he does; moreover, he expects (and
the Scheduler will guarantee) that no other
program will simultaneously have access to
the same record as his program; when operating
in this mode, the program cannot take any
action on the data base except to relinquish
use of a record of an inquiry-mode file once
it has gained access to that record.

For a given program C^ we shall denote the set of files it
wishes to use in write-mode by the notation V^, the set of files it
wishes to use in read-mode by Q^, and the set of files it wishes to
use in inquiry-mode by J^. These sets, V"i, Q±, Ji establish the
claim set for C^. Throughout the course of a run of C^ the
Scheduler will keep account of files actually in use by Ci with a
matched set of sets denoted by W-[, R^, 1^ with the matching

Wi" Vi

I± - J .

For example, at some moment during a run of Ci we might have

V^ = {a, b, e} with W. = {a, b},
1 i

Q± - (c, f}

J± = (d, g}

with R± = {c},

with I = {d},

This means that C-^ currently has access to the files
write-mode, the file c in read-mode, and the file d

a and b in
in inquiry-mode

and that it had declared to the system that it might use files a, b,
and e in write-mode, files
and g in inquiry-mode.

and f in read-mode, and files d

69

CONFLICT, DEADLOCK, AND PERMANENT BLOCKING

The rules of cooperation of processes and the rules of the Scheduler
developed in the mathematical model of the preceding sections have been
formulated to avoid the situations which we shall now discuss.

Two programs, Ci and Cj, conflict if they are both using the
same file in any of the following mode pairs:

C C.
 i J_

write write
write read
read write
inquiry write
write inquiry
inquiry read
read inquiry

or if they both have access to the same record of a file which they
are both using in inquiry-mode. ' The data-sharing Scheduler prevents
conflict by denying any request which would cause conflict if the
request were granted; the requesting program is queued and will auto-
matically be unqueued and granted access as soon as it is possible
(in the mathematical model it was proved that this occurs within a
finite amount of time).

Deadlock is the situation wherein two or more programs mutually
prevent each other from taking their next actions forever. This
would happen if, for example, Ci requested access to b and Cj
next requested access to g while the situation:

W = (g> R. = {b}
and J

V. = {g, b} Q = {g, b}

existed because the Scheduler would queue C^ (because Cj is
using b in a non-compatible mode) and then the Scheduler would
queue Ci (because Ci has use of g in a non-compatible mode).
The Scheduler prevents deadlock by not allowing the potential for
such a situation—in this case it would either have denied use of g
to C. or use of b to C..

i J

Permanent blocking is a condition wherein a program is indefinitely
delayed in its progress because of a sequence of allocation states
which make it unsafe at any moment for the Scheduler to grant a request
for use of a file which the program had made. The Scheduler prevents

70

permanent blocking by detecting the possibility of such a sequence of
allocation states and creating a situation which will force an alloca-
tion state wherein it is safe to allow the potentially indefinitely
delayed program to proceed.

The Scheduler algorithms are given in Section IV; they are
trivially extended to cover inquiry-mode by the rule given in
Section VII, page 62. In the previous sections, we have proved that
the Scheduler prevents conflict, deadlock, and permanent blocking.

THE SAFE SITUATION

The programs of the system are in a safe situation at some
moment if every program can have simultaneous access to all of the
files it had declared in its claim set (V, Q, and J) within a finite
amount of time. The rules of cooperation and the data-sharing
Scheduler guarantee that the programs of the system are always in a
safe situation.

RULES OF COOPERATION

The programs must operate according to the following rules:

Rule 1: Each program C begins operation with an established claim
set,

V - the set of files it might use in write-mode
Q - the set of files it might use in read-mode, and
J - the set of files it might use in inquiry-mode.

At inception W associated with V, R with Q, and I
with J are established and are initially empty (since the
program has not yet had a chance to OPEN a file).

Rule 2: A program may not OPEN a file if the OPENing would cause it
to conflict with some other program (the program may attempt
to do so, but the Scheduler enforces this rule and queues
the program).

Rule 3: With respect to the files which a program C is using or
might use, the program may change its state in one of the
following ways:

(1) C finishes, relinquishing its hold on all of the files
it was using or might have used;

71

(2) C changes W, R, or I by opening or closing a file;
it may open any file listed in V, Q, or J or it may
close any file listed in W, R, or I.

(3) C acquires access to a record of a file which it has
open in inquiry-mode with the provision that no other
program currently has access to the record and its next
action (with respect to the data base) will be to return
the record (relinquish the access privilege); it need
not worry whether some other program has the record—the
Scheduler enforces the rule that no other program
simultaneously have access to the same record—in case
this happens, the Scheduler queues the requesting program.

(4) C changes V, Q, or J by declaring to the Scheduler
that it does not require and will not require for the
rest of its run one or more of the files listed in V,
Q, and J (see footnote 2, page 24).

ENTERING AND LEAVING PROGRAMS

There are no problems about programs entering and leaving the
system. The data-sharing Scheduler algorithms and the rules of
cooperation have been so constructed as to deal specifically with this
case. Entering programs will experience delays in getting started in
their processing only when the Scheduler is attempting to force an
allocation state which will remove the potential for permanent block-
ing of some program which is already in the system.

CREATION AND DELETION OF FILES AND RECORDS

Creation and deletion of a file are not problems since these
actions must be done in write-mode, which guarantees exclusive access.
Record creation and deletion which is performed in write-mode is
clearly no problem. The questionable case is creation or deletion
of a record in inquiry-mode. However, since only one program at a
time has access to a given record in inquiry-mode, again there is no
problem. (Also, see related discussion concerning indexes to random
files under DISCUSSION OF THE SYSTEM (C, D, E , E2) on page 75.)

Two methods of implementation for handling creation and deletion
of files suggest themselves. One, the data-sharing Scheduler may have
a static information base which covers the entire universe of operation.
In this method, an entry exists for a file in the data-sharing Scheduler's
tables whether the file exists or not. Two, in the case that storage

72

space is very limited, the Scheduler could dynamically maintain records
of which files exist—in this method, perhaps a new command would be
added to the system to inform the Scheduler that a file is being created
or deleted.

THE SCHEDULER

We present in narrative form the principal aspects of the Scheduler's
operation as follows:^

1) when a request for access to a file (by OPEN) is made, the
Scheduler

i) checks to see that the request is legal; the file must
have been declared and must not already be in use by
the requesting program; also the requesting program
must not currently have ownership of a record of a
file which it is using in inquiry-mode;

ii) checks to see if granting the request would cause con-
flict; if so, the requesting program is queued; if not,
then the next step;

iii) checks to see if granting the request would result in
a safe permutation of the processes; if so, the request
is granted and the Scheduler notes that the requesting
program now has access to the file it had requested;
if not, then the requesting program is queued; in
either case the request has been processed and the
Scheduler is done;

2) when a request for access to a record of a file being used
in inquiry-mode is made, the Scheduler

i) checks to see that the request is legal; the file must
have been declared for inquiry-mode and the program
must have successfully OPENed it and the program must
not currently have ownership of any other record of
any other file to which it has access in inquiry-mode;

ii) checks for conflict; this record which has been requested
must not currently be owned by some other program; if
conflict, then the Scheduler queues the program; if not,
the request is granted and duly noted by the Scheduler;

^ See Section V for a more formal description.

73

3) when a claim set establishment request is received from a
program or on behalf of a program, the Scheduler updates its
tables to reflect the existence of the program in the system
and its claim set;

4) when access to a file is relinquished by a program (by CLOSE),
the Scheduler

i) checks to see if there is some program to which it has
given priority because the program was in the position
where it might have been permanently blocked; if there
is such a program, then it checks to see whether or
not it is safe to grant that program's request; if it
is safe, then the Scheduler grants access to the file
to this program, notes that all program requests may
now be considered (any program which had been delayed
in starting because of this priority program are now
free to make requests), and then does step iii);
otherwise, the Scheduler does step ii);

ii) checks to see if any queued program had requested
access to the returned file; if some program which
had been queued wants access to the file which has
just been returned but the grant cannot safely be made,
then the Scheduler gives this program the priority
discussed in i) and notes that no new processes may
get access to files until this priority program has
gained access to the file which it had requested; then
it continues at step iii);

iii) checks to see if any queued programs can now safely be
granted their requests; if so, it grants the requests
and unqueues the programs; then it does step iv);

iv) notes that the program which gave back the file (did
the CLOSE) no longer has access rights to the file.

74

DISCUSSION OF THE SYSTEM (C, D, E,, E,)

Let (C_, D, Els E2) denote the system of COBOL programs described
in Section VI and extended according to the development of Section VII.
Then (C, D, Ej_, E2) is a system of COBOL programs concurrently and
cooperatively operating on a common set of files. The characteristic
introduced by E2 is the capability to have two or more COBOL pro-
grams concurrently reading and updating the same file or files under
the rules for inquiry-use-mode. At the same time, the system retains
the properties which guarantee that

1) conflict, deadlock, and permanent blocking do not occur,

2) integrity of the data base is preserved, and

3) integrity of information output can be achieved.

However, we must be careful to understand that inquiry-use-mode
represents restricted use of a file. The extent of the restriction
will depend to some degree upon the particular implementation chosen.
In order to explore to some extent the nature of the restriction,
we shall further construct the hypothetical system of COBOL programs
and then consider examples of operation.

We have thus far assumed that each file declared by a COBOL pro-
gram (or process) would have associated with it a declaration of
intended mode of use—read, write, or inquiry. Let us assume fur-
ther that an implementation of the model is carried out so that the
resulting system has also the properties (taken to be natural ones
by direct application of the model) now to be discussed. A file
declared to have a given use mode may only be used by the declaring
COBOL program (process) in that use mode. Associated with each
random file may be a set of physically separate index files. An
index file will be considered to be a collection of pairs, each pair
consisting of a key and a pointer to a record in the random file
associated with the index file. Now let us suppose further that no
provision has been made for declaring use mode for an index file;
rather, when a random file is declared, an associated set of index
files is also declared and the use mode of the index file is inexorably
decided by the system.

If the file is declared with use mode read or inquiry, then the
associated index files have use mode read; if the file has use mode
write, then the associated index files have use mode write. We can
now consider some examples involving inquiry-use-mode.

i.n this mode, an a (element of an element of S) corresponds to a
COBOL record.

75

Suppose that a random file, say r, with one associated index,
say i, is used in inquiry-use-mode by several COBOL programs. With
the assumed implementation, while it is true that records of the
file may be read and updated by the several COBOL programs, it is
not true that updating of a record in r can be allowed to affect
the index i—in particular, a record may be neither created nor
deleted in inquiry-use-mode. Hence, changes to the index i must
be done in write-mode (exclusive owner).

With such an implementation assumed, we can readily deduce char-
acteristics of operation of the system. Clearly, an application
wherein only inquiry-use-mode is normally required can be handled
effectively. If the application naturally allows for a cycle of
operation in which the modes of operation alternate between inquiry-
use and reporting/updating, then the model seems readily adaptable
to the design of a system for the application. However, suppose
that an application requires

1) inquiry-use-mode predominantly, and

2) occasional updates which cannot be batched.

An example of such an application is an on-line banking application
viewed during the hours when the bank is servicing customers. Let
r represent a customer checking account file and let i represent
an index to the random file r, where the index key is account num-
ber. Imagine r being used in inquiry-mode by a number of tellers
while r is occasionally used by branch managers in write-mode to

add and delete customers (affecting i, naturally). Further assume
that it is normal practice for a teller's program to open the file
r at the beginning of the teller's hours and not to close it until
the teller is ready to terminate his service (otherwise, an open and
close would be done for each transaction, thereby defeating the use-
fulness of inquiry-use-mode). Then we have the disappointing result
that an attempt at 9 a.m. by a branch manager to add a new customer
to the file will probably not succeed until around 4 p.m. of the same
day (since we call W <-3> I a case of conflict and disallow it) .

The ingenuity of the system designer and knowledge of the appli-
cation can both come to the rescue in this case. We can easily extend
an access privilege to the branch managers, who, operating in good
faith, temporarily are allowed write-use access to r (one at a time
naturally) even though r is currently open for a number of inquiry-
mode users. The good faith part is this - that the COBOL program
being run by the branch manager from his terminal does not attempt to
open other files after opening r for update. Of course, allowing
this program to update the file r will block out all inquiry-mode

76

users. However, if the business of the branch manager is to open the
file, add or delete a customer, and close the file, then we are
dealing with a delay at a teller's terminal of only seconds. Moreover,
the system designer can easily convince himself that such an access
exception does not undermine the correct operation of the system;
he must provide, however, that access to i followed by access to
r be considered an indivisible operation in inquiry-use-mode for
certain types of structure for i such as hash-encoding.

SUMMARY

The foregoing discussion shows that the model is not a set of
sacrosanct rules for the implementation of a system; the proper use
of a model is to guide an implementation to the production of a cor-
rect and effective system. For example, while Theorem 18 of Section
VII shows that the strategy developed in Section IV will work, prac-
tical considerations suggest that a separate queue, say I_, for pro-
grams suspended by an inquiry-use-mode request will reduce the amount
of work performed by the scheduler—for the scheduler need then inspect
1 only when an element which had been requested by a program in I_
is released and need never inspect Q when an inquiry-use-mode record
is released.

With the addition of E2 to the system of COBOL programs, we
have greatly extended the flexibility with which the application
designer may approach his job. As we have seen, implementation stra-
tegies and adaptations of the model can add to this flexibility.

The application designer, by appropriate implementation, is
given these tools :

1) an application language, COBOL;

2) a data base structure; and

3) three use-modes for programs operating on the data base.

The system within which the application designer must work is suited
to those applications wherein:

1) the organization of the data base can be planned ahead of
implementation; and

77

2) the functional requirements are known ahead of implementation
so that each COBOL program can be tailored to do its job
with minimum effect on other programs in the system.

78

Theorem 1

Theorem 2

Theorem 3

Corollary 1

Theorem 4

Lemma 1

Theorem 5

Theorem 6

Corollary 2

Theorem 7

Theorem 8

Corollary 3

Algorithm CX

Theorem 9

Theorem 10

Theorem 11

Theorem 12

Theorem 13

Theorem 14

Theorem 15

Theorem 16

Theorem 17

Theorem 18

APPENDIX

LIST OF THEOREMS

Page 11

Page 11

Page 11

Page 12

Page 12

Page 13

Page 13

Page 13

Page 14

Page 14

Page 14

Page 16

Page 16

Page 16

Page 17

Page 18

Page 29

Page 29

Page 39

Page 64

Page 65

Page 65

Page 66

79

REFERENCES

1. A. N. Habermann, On the Harmonious Cooperation of Abstract
Machines, Thesis, Math Dept., Technological University,
Eindhoven, The Netherlands, 1967.

2. R. Silver, L. J. LaPadula (ed.), Processes Cooperatively Using
Hierarchically Structured Data, The MITRE Corporation, MTR 2124,
Contract F19(628)-71-C-0002, Bedford, Massachusetts, 25 May 1971.

3. R. C. Holt, "Comments on Prevention of System Deadlocks," Comm.
of the ACM, 14, 1, January 1971, 36-38.

4. A. W. Holt, Information System Theory Project, Applied Data
Research Inc., AD 676 972, Princeton, New Jersey, September 1968.

5. D. A. Adams, "A Model for Parallel Computations," Parallel Pro-
cessor Systems, Technologies, and Applications, Hobbs, Spartan
Books, 1970, 311-333.

6. A. N. Habermann, "Prevention of System Deadlocks," Comm. of the
ACM, 12, 7, July 1969, 373-377, 385.

7. J. B. Glore et al, Concurrent Data Sharing Problems in Multiple
User Computer Systems, The MITRE Corporation, ESD-TR-71-221,
Bedford, Massachusetts, July, 1971.

80

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of Utle, body of abstract and indexing annotation must be entered when the overall report Is classified)

ORIGIN* TING ACTIVITY (Corporate author)

The MITRE Corporation
P.O. Box 208
Bedford, Mass.

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3 REPORT TITLE

HARMONIOUS COOPERATION OF PROCESSES OPERATING ON A COMMON SET OF DATA,
PART 1

« DESCRIPTIVE NOTES (Type of report and Inclusive dates)

5. AUTHOR(S) fFirsf name, middle Initial, last name)

L.J. LaPadula

8 REPORT DATE

DECEMBER 1972
7a. TOTAL NO. OF PAGES

89
7b. NO. OF REFS

7

>a. CONTRACT OR GRANT NO.

F19628-71-C-0002
b. PROJEC T NO.

671A

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-147, Vol. 1

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned
this report)

MTR-2254, Vol. I

0 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
L. G. Hans com Field, Bedford, Mass.

3 ABSTRAC T

A mathematical model of a computer system for multi-user data base
management is presented. Rules of cooperation, a scheduling strategy,
and a safety algorithm are shown to provide harmonious cooperation
among processes while preventing conflict, deadlock, and permanent
blocking. Throughout the development, the discussion is related to a
set of COBOL programs operating on a collection of COBOL files.

DD FORM
i NOv es 1473

Security Classification

Security Classification

KEY wo RDS
RO L E WT ROLE WT

DATA SHARING

DEADLOCK

FINITE-STATE MACHINES

PERMANENT BLOCKING

Security Classification

